HomeSMCC Higher Education Research Journalvol. 5 no. 1 (2017)

Essay Scoring System Using Semantic Similarity Approach

Daisa S Ocharon

Discipline: Information Technology

 

Abstract:

Essay Scoring System provides a systematic checking of essay based on the similarity of its meaning to the model as implied on the content. This study automatically score essays and give feedback to the students about their score. Besides, the system uses algorithms that analyze the lexical semantics of the words to get the similarity between the model and student essay which includes the Common Term Frequency (CTF), Longest Common Subsequence (LCS), and Semantic Distance (SD). The two essay will undergo the Text Processing Phase which includes the process of Tokenization, Stop words removal, Stemming and Parts-of-Speech (POS) tagging. It uses the WordNet database for word synonymy and semantic references. Word Sense Disambiguation is also implemented in the study to identify the meaning of the word used in the context and also to solve the ambiguity of meaning particularly on homonyms. The scoring follows the predefined criteria for content relevance, spelling, and grammar. Furthermore, the study conducted tests to the actual users of the system including teachers. Based on these tests, the computed percentage differences between the teacher and the system score is 18.03% with an accuracy of 82.18%. The accuracy shows a close similarity of the system’s score to the teachers’ given score to the essays. Developing the system faces a challenge in the implementation of the semantic algorithms. Since the study is more capable of evaluating semantic similarity based on word occurrences, it is best to further the system’s capability of checking the semantic similarity based on the context of the essay.