HomeHealth Sciences Journalvol. 10 no. 1 (2021)

In vitro susceptibility of bacterial conjunctivitis standard isolates to non-fluoroquinolone ophthalmic medications

Moses Job D. Dumapig | Eric Constantine Valera

 

Abstract:

Introduction This study aimed to determine the in vitro susceptibility of standard isolates of common pathogens causing bacterial conjunctivitis to non-fluoroquinolone antimicrobial ophthalmic medications. Methods This is a single-blind experimental study which compared the in vitro susceptibility of Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis to locally available non-fluoroquinolone ophthalmic medications, specifically chloramphenicol, tobramycin, fusidic acid, gentamicin sulfate, sulfacetamide and polymyxin-neomycin. Utilizing the disk diffusion method, zones of inhibition in millimeters for each bacterial isolate was recorded and tabulated. Kruskal-Wallis test was used to determine statistical differences. Results Both Staphylococci were sensitive to all antibiotics except sulfacetamide. Only chloramphenicol showed activity against all four isolates. Tobramycin showed the largest zone of inhibition against Pseudomonas aeruginosa. There was statistically significant difference in the median zone of inhibition in each antimicrobial medication against Staphylococcus aureus (p = 0.002) and Staphylococcus epidermidis (p < 0.001) with the largest mean zone of inhibition by fusidic acid of 34 and 38 millimeters, respectively. Streptococcus pneumoniae was least susceptible to antibiotics tested; only chloramphenicol and fusidic acid showed activity. There were also significant differences in the median zones of inhibition across the isolates. Conclusion The standard isolates are susceptible to at least one non-fluoroquinolone ophthalmic medication. The antibiotics tested showed differences in activity against the four isolates. The findings of this study may be used as a basis to review local practice patterns or/and initiate revisions in the guidelines for prescribing initial treatment of bacterial conjunctivitis.



References:

1. Smith AF, Waycaster C. Estimate of the direct and indirect annual cost of bacterial conjunctivitis in the United States. BMC Ophthalmol 2009 Nov 25; 9: 13. doi: 10.1186/1471-2415-9-13

2. Epling, J. Bacterial conjunctivitis. BMJ Clin Evid 2012 Feb 20; 2012: 0704.

3. American Academy of Ophthalmology Preferred Practice Pattern Cornea and External Disease Panel. Conjunctivitis Preferred Practice Pattern. San Francisco, CA: American Academy of Ophthalmology; September 2018.

4. Azari AA, Barney NP. Conjunctivitis. JAMA. 2013 Oct 23; 310(16): 1721-9. doi: 10.1001/jama.2013.280318

5. Sheikh A, Hurwitz B, van Schayck CP, McLean S, Nurmatov U. Antibiotics versus placebo for acute bacterial conjunctivitis. Cochrane Database Syst Rev 2012 Sep 12; (9): CD001211. doi: 10.1002/14651858.CD001211.pub3

6. Hutnik C, Mohammad H, Shahi M. Bacterial conjunctivitis. Clin Ophthalmol 2010 Dec 6; 4: 1451-7. doi: 10.2147/OPTH.S10162.

7. American Academy of Ophthalmology Basic and Clinical Science Course Subcommittee. Basic and Clinical Science Course, Section 08: External Disease and Cornea. San Francisco, CA; American Academy of Ophthalmology;2016-2017.

8. Hovding, G. Acute bacterial conjunctivitis. Acta Ophthalmol 2008 Feb; 86(1): 5-17. doi: 10.1111/j.1600-0420.2007.01006.x

9. Bertino JS. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin Ophthalmol 2009; 3: 507-21. doi:10.2147/opth.s5778

10. McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J Cataract Refract Surg 2010 Sep; 36(9): 1588-98. doi:10.1016/j.jcrs.2010.06.028

11. Bremond-Gignac D, Chiambaretta F, Milazzo S. A European perspective on topical ophthalmic antibiotics: current and evolving options. Ophthalmol Eye Dis 2011 Oct 24; 3: 29-43. doi: 10.4137/OED.S4866. Print 2011

12. Ta s m a n W, Ja e ge r E A ( E d s ) . D u a n e ’s C l i n i c a l Ophthalmology [CD-Rom]. Lippincot Williams and Wilkins; 2012.

13. Supritha N, Mohapatra S, Jamuna R. Prescription pattern of antibiotics and susceptibility of the pathogens in infectious conjunctivitis. Biomed Pharmacol J 9(2): 599- 604. doi:10.13005/bpj/978

14. Mah F. Bacterial, chlamydial, and mycobacterial infections. In: Albert DM, Miller JW, Azar DT, Blodi BA (Eds): Albert & Jakobiec’s Principles and Practice of Ophthalmology. 3rd Ed. WB Saunders Elsevier, January 2008, ISBN-13: 978–1416000167

15. MIMS Pte. Ltd. MIMS Dr ug Reference Concise Prescribing Information Philippines. 157th Ed. June 2019

16. Clinical and Laboratory Studies Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. 29th Edition. January 2019

17. Su CW, Tighe S. Microorganisms and common ophthalmic diseases. Int J Ophthalmol Eye Res 5(1): 272-6. doi: dx.doi.org/10.19070/2332-290X-1600058

18. Semanyenzi SE, Abahuje E. Normal conjunctival flora as seen in adult patients at Kigali University Teaching Hospital. Rwanda Med J 2013; 70(2); 15-20.

19. Mantadakis E. Maraki S, Michailidis L, Gitti Z, Pallikaris IG, Samonis G. Antimicrobial susceptibility of Gram-positive cocci isolated from patients with conjunctivitis and keratitis in Crete, Greece. J Microbiol Immunol Infect 2013 Feb; 46(1): 41-7. doi: 10.1016/j.jmii.2011.12.025

20. Watson S, Cabrera-Aguas M, Khoo P. Common eye infections. Aust Prescr 2018 Jun; 41(3): 67-72. doi: 10.18773/austprescr.2018.016

21. Constable P, Hinchcliff K, Grünberg W. Practical antimicrobial therapeutics. Veterinary Medicine. 11th Ed.pp. 153-74.

22. Anwar N, Ahmed S, Kazi S H, Sheraz MA, Ahmad I. Sulfacetamide: An ophthalmic anti-infective agent. JPharm Pharm Sci 2014; 2(1): 28-33.

23. Kumar P. Pharmacology of Specific Drug Groups. Pharmacology and Therapeutics for Dentistry. pp. 457-87.doi: 10.1016/b978-0-323-39307-2.00033-3

24. Jackson W, Low D, Dattani D, Whitsitt P, Leeder R, MacDougall R. Treatment of acute bacterial conjunctivitis:1% fusidic acid viscous drops vs. 0.3% tobramycin drops. Can J Ophthalmol 2002 Jun; 37(4): 228-37. doi: 10.1016/s0008-4182(02)80114-4

25. Van Bambeke F, Mingeot-Leclercq M, Glupczynski Y, Tulkens P. Mechanisms of action. Infect Dis 1162-80.e1.doi: 10.1016/b978-0-7020-6285-8.00137-4

26. Drozhzhyna, G, Sereda, E, Gaydamaka T, Molodaia A. Efficacy of using antibacterial fusidic acid drops in patients with red eye. J Ophthalmol (Ukraine) 2017; 1: 34-7.

27. Asbell P, Colby KA, Deng S, et al. Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates. Am J Ophthalmol 2008 Jun; 145(6): 951-8. doi:10.1016/j.ajo.2008.01.025

28. Shrestha SP, Khadka J, Pokhrel AK, Sathian B. Acute bacterial conjunctivitis – antibiotic susceptibility and resistance to commercially available topical antibiotics in Nepal. Nepal J Ophthalmol 2016 Jan; 8(15): 23-35. doi:10.3126/nepjoph.v8i1.16153