HomePhilippine Scientific Journalvol. 54 no. 2 (2021)

Biogenic Synthesis of Silver Nanoparticles using Philippine Lime (Citrofortunella microcarpa) Peel Extract and its Antibacterial Activity in Comparison to Ciprofloxacin against Escherichia coli

Sarang M. Chaudary | Chiari Emilie I. Durana | Aira Louise E. Empaynado | Shairyll Queenie R. Fadriquelan | Anne Claire F. Feudo | Jennilyne G. Fule | Manali C. Kamerkar | Pankti J. Kanani | Pardeep Kaur | Beverly Grace A. Lamug | Janina N. Lastimosa | Irene V. Columbano

 

Abstract:

Objective: The main objective of this study is to determine the effectiveness of Philippine lime as a reducing agent in synthesizing silver nanoparticles (AgNps) to produce antimicrobial properties against Escherichia coli. Specifically, it aims to determine the effectiveness of synthesized AgNPs against Escherichia coli using minimum inhibitory concentration (MIC) disk diffusion and serial dilution then comparing its effectiveness against the standard drug ciprofloxacin. Methods: This study is an experimental research design and was conducted at Manila Central University Laboratory. The AgNP was synthesized from 1mM of silver nitrate by using 5mL of Philippine lime peel extract as a reducing agent. The initial characterization of the formed AgNPs was done by Ultraviolet-visible (UV-Vis) spectroscopy, the particle size was determined by Scanning Electron Microscope (SEM), and the elemental composition was examined through Energy Dispersive X-Ray (EDX) analysis. Statistical treatment data was applied using One-Way Analysis of Variance and Welch F-test followed by Tukey’s pairwise post-hoc tests with significance limit set at 5% probability. Results: The antimicrobial property of AgNP solution with varying volumes of 50uL, 75uL, and 100uL were shown to have no activity against Escherichia coli using standard values. Conclusion: Citrofortunella microcarpa peel extract has been proven effective in reducing silver ions into AgNP. There was zero inhibition compared to ciprofloxacin which obtained the standard zone of inhibition.



References:

  1. Rubiatul, A.S., Nor Helya I. K., Zarina Z., Dachyar A., NurulAin H.A. Antibacterial Properties of Limau Kasturi (C. microcarpa) Peels Extract. Advances in Environmental Biology. [Internet]. 2015 [cited 2020 March 30]; 5-9. Available from: https://www.thefreelibrary.com/Antibacterial+properties+of+Limau+kasturi+(C.+microcarpa)+peels...-a0440635601
  2. Cheong, Mun Wai., Zhu, Danping., Sng, Jingting., Liu, Shao., Zhou, Weibiao., Curran, Philip., Yu, Bin. Characterisation of calamansi (Citrus microcarpa). Part II: Volatiles, physicochemical properties and non-volatiles in the juice. Food Chemistry. [Internet]. 2012 [cited 2020 March 30] 696-703. Available from: https://pubmed.ncbi.nlm.nih.gov/23107680/DOI: 10.1016/j.foodchem.2012.02.139
  3. Mahmuda, Aktera Md., Tajuddin, Sikderd Md., Mostafizur, RahmanaA.K.M., Atique,Ullah eKaniz Fatima Binte Hossain., Subrata, Banika., Toshiyuki, Hosokawaf., et al. A Systematic Review On Silver Nanoparticles-Induced Cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research. [Internet]. 2018 Jan [cited 2020 March 30]; 1-16. Available from: https://pubmed.ncbi.nlm.nih.gov/30046482/ DOI: 10.1016/j.jare.2017.10.008
  4. Yun’an Qing., Lin Cheng., Ruiyan Li., Guancong Liu., Yanbo Zhang., Xiongfeng Tang., et al. Potential Antibacterial Mechanism Of Silver Nanoparticles And The Optimization Of Orthopedic Implants By Advanced Modification Technologies. Int J Nanomedicine. [Internet]. 2018 [cited 2020 March 30]; 3311–3327. Available from: https://pubmed.ncbi.nlm.nih.gov/29892194/ DOI: 10.2147/IJN.S165125
  5. Monaliben Shah., Derek Fawcett., Shashi Sharma., Suraj Kumar Tripathy., and Gérrard Eddy Jai Poinern. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel). [Internet]. 2015 [cited 2020 March 30]; 7278–7308. Available from: https://pubmed.ncbi.nlm.nih.gov/28793638/ DOI: 10.3390/ma8115377
  6. Kakakhel, Shabir Ahmad & Munir, Sidra & Zeb, Nadia & Ullah, Asad & Khan, et al. Green Nanotechnology: A Review on Green Synthesis Of Silver Nanoparticles —An Ecofriendly Approach. International Journal of Nanomedicine. [Internet]. Volume 14. 2019 [cited 2020 March 30]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636611/ DOI: 10.2147/IJN.S200254
  7. Nan-Yao Lee., Wen-Chien Ko and Po-Ren Hsueh. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology. [Internet]. 2019 Oct [cited 2020 March 30]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787836/ DOI: 10.3389/fphar.2019.01153
  8. Humberto Palza. Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences. [Internet]. 2015 Jan [cited 2020 March 30]; 2099–2116. Available from: https://www.mdpi.com/1422-0067/16/1/2099 DOI: 10.3390/ijms16012099
  9. Wang L., Hu C., Shao L. The Antimicrobial Activity Of Nanoparticles: Present Situation And Prospects For The Future. Int J Nanomedicine. [Internet]. 2017 Feb [cited 2020 March 30]; 1227-1249. Available from: https://pubmed.ncbi.nlm.nih.gov/28243086/ DOI: 10.2147/IJN.S121956
  10. Duran, Nelson & Durán, Marcela & De Jesus, Marcelo & Seabra, Amedea & Fávaro, Wagner & Nakazato, Gerson. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine: Nanotechnology, Biology and Medicine. [Internet]. 2015 Nov [cited 2020 March 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/26724539/ DOI: 10.1016/j.nano.2015.11.016.
  11. Raghunath and Perumal. Metal Oxide Nanoparticles As Antimicrobial Agents: A Promise For The Future. Int J Antimicrob Agents. [Internet]. 2017 Feb [cited 2020 March 30]; 137-152. Available from: https://pubmed.ncbi.nlm.nih.gov/28089172/ DOI: 10.1016/j.ijantimicag.2016.11.011
  12. Caroll, KC, et al. Jawetz, Melnick, & Adelberg’s Medical Microbiology. 27th ed. Enteric Gram-Negative Rods (Enterobacteriaceae). McGraw Hill; 2016. p.231 - 244
  13. Abigail Clements., Joanna C. Young., Nicholas Constantinou and Gad Frankel. Infection Strategies of Enteric Pathogenic Escherichia Coli. Gut Microbes. [Internet]. 2012 Mar [cited 2020 March 30]; 71–87. Available from: https://pubmed.ncbi.nlm.nih.gov/22555463/ DOI: 10.4161/gmic.19182
  14. Samarei R. Comparison of Local And Systemic Ciprofloxacin Ototoxicity In The Treatment Of Chronic Media Otitis. Glob J Health Sci. [Internet]. 2014 Sept [cited 2020 March 30]; 6 (7 Spec No):144-9. Available from: https://pubmed.ncbi.nlm.nih.gov/25363170/ DOI: 10.5539/gjhs.v6n7p144
  15. Appelbaum, P. C., and P. A. Hunter. The Fluoroquinolone Antibacterials: Past, Present and Future Perspectives. Int. J. Antimicrob. 2000; Agents 16:5-15. CrossRefPubMedWeb of Science
  16. Oliphant, C. M., and G. M. Green. Quinolones: A Comprehensive Review. Am. Family Physician. [Internet]. 2002 Feb [cited 2020 March 30]; 65:455-464. Available from: https://www.aafp.org/afp/2002/0201/p455.html
  17. Park, H. R., T. H. Kim, and K. M. Bark. Physicochemical Properties of Quinolone Antibiotics In Various Environments. Eur. J. Med. Chem. [Internet]. 2002 [cited 2020 March 30]; 37:443-460. Available from: https://pubmed.ncbi.nlm.nih.gov/12204471/ DOI: 10.1016/s0223-5234(02)01361-2
  18. Hawkey, P. M. Mechanism of Quinolone Action and Microbial Response. J. Antimicrobial. Chemother.[Internet]. 2003 May [cited 2020 March 30]; 51(Suppl.S1):29-35. Available from: https://pubmed.ncbi.nlm.nih.gov/12702701/ DOI: 10.1093/jac/dkg207
  19. Hermosa, M., Lampitoc, J., Nuestro, J. and Parado, M., Bioreduction of Silver Nanoparticles using Calamansi (Citrus microcarpa Fam. Rutaceae) Leaf Extract and Screening for its Antimicrobial Property. 2017. Unpublished Material.