HomeRecoletos Multidisciplinary Research Journalvol. 11 no. 1 (2023)

Bio-efficacy of Trichoderma harzianum Rifai and Botanical Extracts against Major Fungal Pathogens of Tamarind (Tamarindus indica L.) under Field Condition

Mary Grace B. Gatan | Aneska D. Bulanadi | Mary Angelica Rose F. Limpin | Menrado T. Gatan | Cesar B. Orpiada

 

Abstract:

Domestic production of tamarind has decreased in the country due to diseases. Tests were made on the individual efficacy of botanical extracts like plant growth promoter (PGP) and oriental herb nutrient (OHN), as well as the Trichoderma harzianum Rifai as a possible biocontrol agent against major fungal tamarind diseases. Using Randomized Complete Block Design (RCBD), a field setup was established with five treatments: untreated (negative control), synthetic fungicide, OHN, PGP, and T. harzianum having three replications per treatment. Results revealed that T. harzianum is an effective biocontrol agent against major fungal tamarind diseases. PGP having similar efficiency with T. harzianum, significantly inhibited the infection and provided immediate defense from diseases. OHN is less effective due to delayed reduced infection. The research output is a significant help in the management of various diseases that is cost-effective and safe.



References:

  1. Abdulkadir, A., Hayatu, M., Sani, L. A., & Ahmed, H. (2022). Biocontrol ability of Trichoderma harzianum on growth, disease incidence and yield of selected cowpea varieties (Vigna unguiculata L.) infested with Colletotrichum lindemuthianum. Bima Journal of Science and Technology, 6(2), 65-76. https://doi.org/10.56892/bimajst.v6i02.356
  2. Abdullahi, A., Khairulmazmi, A., Yasmeen, S., Ismail, I. S., Norhayu, A., Sulaiman, M. R., Ahmed, O. H., & Ismail, M. R. (2020). Phytochemical profiling and antimicrobial activity of ginger (Zingiber officinale) essential oils against important phytopathogens. Arabian Journal of Chemistry, 13(11), 8012-8025. https://doi.org/10.1016/j.arabjc.2020.09.031
  3. Agi, V., & Azike, C. (2019). Antifungal action of garlic (Allium sativum) and ginger (Zingiber officinale) on some pathogenic fungi. Asian Journal of Research Biochemistry, 4(4), 1-6. https://doi.org/10.9734/ajrb/2019/v4i430075
  4. Agrios, G. N. (1988). Plant pathology (3rd ed.). Academic Press.
  5. Anal, A. K. D., Rai, S., Singh, M., & Solanki, M. K. (2020). Plant mycobiome: Current research and applications. In M. Solanki, P. Kashyap, & B. Kumari (Eds.), Phytobiomes: Current insights and future vistas (81-104). Springer. https://doi.org/10.1007/978-981-15-3151-4_4
  6. Castleman, M. (2010). The new healing herbs: The essential guide to more than 125 of nature’s most potent herbal remedies. Rodale Press.
  7. Chang, K. C. S., McGinn, J. M., Weinert Jr., E., Miller, S., Ikeda, D. M., & DuPonte, M. W. (2014). Natural farming: Oriental herbal nutrient. College of Tropical Agriculture and Human Resources (CTAHR). https://www.ctahr.hawaii.edu/oc/freepubs/pdf/sa-11.pdf
  8. Cho, J. Y., Choi, G. J., Lee, S. W., Jang, K. S., Lim, H. K., Lim, C. H., Cho, K.-Y., & Kim, J.-C. (2006). Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. Journal of Microbiology and Biotechnology, 16(2), 280-285. https://www.researchgate.net/publication/283821700_Antifungal_activity_against_Colletotrichum_spp_of_curcuminoids_isolated_from_Curcuma_longa_L_rhizomes
  9. Chow, J. (2002). Probiotics and prebiotics: A brief overview. Journal of Renal Nutrition, 12(2), 76–86. https://doi.org/10.1053/jren.2002.31759
  10. Cooke, R. C., & Whipps, J. M. (1993). Ecophysiology of fungi. Blackwell Scientific.
  11. Darmadi, A. A. K., Suriani, N. L., Darmayasa, I. B. G., Bagus, I., Suaskara, M., Gari, N. M., & Fudholi, A. (2021). Cinnamon leaf extract to control anthracnose disease on Chilli plants in Bali: A novel and new potential. International Journal of Pharmaceutical Research, 13(1), 1006-1015. https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/ecb1a9d3943a8fb2e24aa53248f3f927.pdf
  12. Darmadi, A. A. K., Suriani, N. L., Sudirga, S. K., & Khalimi, K. (2019). First study on Fusarium equiseti: Causes fusarium wilt in tomato crop in Bali, Indonesia. SABRAO Journal of Breeding & Genetics, 51(4), 442-450. https://sabraojournal.org/wp-content/uploads/2020/01/SABRAO-J-Breed-Genet-514-442-450-Darmadi.pdf
  13. Davari, M., & Ezazi, R. (2022). Mycelial inhibitory effects of antagonistic fungi, plant essential oils and propolis against five phytopathogenic Fusarium species. Archives of Microbiology, 204(8), 480. https://doi.org/10.1007/s00203-022-03102-6
  14. El-Siddig, K., Gunasena, H. P. M., Prasad, B. A., Pushpakumara, D. K. N. G., Ramana, K. V. R., Vijayanand, P., & Williams, J. T. (2006). Tamarind: Tamarindus indica L. Southampton Centre for Underutilised Crops. https://books.google.com.ph/books?id=QhtZLMVPLIIC&lpg=PR1&dq=Tamarind%3A%20Tamarindus%20Indica%20L%20(Vol.%201).%20Crops%20for%20the%20Future.%20International%20Centre%20for%20Underutilised%20Crops%20University%20of%20Southampton%2C%201%3A1&pg=PR1#v=onepage&q&f=false
  15. Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162, 759–792. https://doi.org/10.1007/s10658-021-02393-7
  16. Gatan, M. G. (2021). Identification and assessment of major phytopathogenic fungi of tamarind leaves in Central Luzon, Philippines. http://dx.doi.org/10.2139/ssrn.3937830
  17. Gawarkar, S. V., Deshmukh, R. G., Matte, A. D., & Patil, M. J. (2022). In vitro management of Aspergillus niger of Sesamum (Sesamum indicum). The Pharma Innovation Journal, 11(12), 768-770. https://www.thepharmajournal.com/archives/2022/vol11issue12/PartJ/11-11-380-789.pdf
  18. Gwa, V. I., & Ekefan, E. J. (2017). Fungal organisms isolated from rotted white yam (Dioscorea rotundata) tubers and antagonistic potential of Trichoderma harzianum against Colletotrichum species. Agricultural Research & Technology Open Access Journal, 10(3), 58-67. https://juniperpublishers.com/artoaj/pdf/ARTOAJ.MS.ID.555787.pdf
  19. Habsah, M., Amran, M., Mackeen, M. M., Lajis, N. H., Kikuzaki, H., Nakatani, N., Rahman, A. A., Ghafar, & Ali, A. M. (2000). Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. Journal of Ethnopharmacology, 72(3), 403-410. https://doi.org/10.1016/S0378-8741(00)00223-3
  20. Hafez, Y. M., El-Nagar, A. S., Elzaawely, A. A., Kamel, S., & Maswada, H. F. (2018). Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by upregulation of defense-related enzymes. Egyptian Journal of Biological Pest Control, 28(1), 57. https://doi.org/10.1186/s41938-018-0058-8
  21. Harrison, J. G., Lowe, R., & Williams, N. A. (1994). Humidity and fungal diseases of plants–problems. In J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (79-97). CAB International.
  22. Hojo, H., & Sato, J. (2002). Antifungal activity of Licorice (Glycyrrhiza glabra) and potential applications in beverage. Foods & Food Ingredients Journal of Japan, (203), 27-33.
  23. Hussain, I., Alam, S. S., Khan, I., Shah, B., Naeem, A., Khan, N., Ullah, W., Iqbal, B., Adnan, M., Junaid, K., Shah, S. R. A., Ahmed, N., & Iqbal, M. (2016). Studies on biological management of fusarium wilt of tomato. Journal of Entomology and Zoology Studies, 4(2), 525-528. https://www.entomoljournal.com/archives/2016/vol4issue2/PartH/4-3-59.pdf
  24. Jayaprakasha, G. K., & Rao, L. J. (2011). Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Critical Reviews in Food Science and Nutrition, 51(6), 547–562. https://doi.org/10.1080/10408391003699550
  25. Maekawa, L. E., Valera, M. C., de Oliveira, L.D., Carvalho, C. A. T., Camargo, C. H. R., & Jorge, A. O. C. (2013). Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals. Journal of Applied Oral Science, 21(1)25–31. http://dx.doi.org/10.1590/1678-7757201302129
  26. Ming, L. J., & Yin, A. C. (2013). Therapeutic effects of glycyrrhizic acid. Natural Product Communications, 8(3), 415–418. https://doi.org/10.1177/1934578X1300800335
  27. Moenne, A., & González, A. (2021). Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydrate Research, 503, 108298. https://doi.org/10.1016/j.carres.2021.108298
  28. Muliani, Y., Irmawatie, L., Sukma, S. M., Srimurni, R. R., Adviany, I., Ustari, D., & Milani, M. N. (2022). Antagonism Trichoderma harzianum rifai in suppresing the intensity of Antraknosa (Colletotrichum capcisi Sydow.) disease. Al-Hayat: Journal of Biology and Applied Biology, 5(1), 75-88. https://doi.org/10.21580/ah.v5i1.13546
  29. Panwar, V., Aggarwal, A., Singh, G., Verma, A., Sharma, I., & Saharan, M. S. (2014). Efficacy of foliar spray of Trichoderma isolates against Fusarium graminearum causing head blight of wheat. Journal of Wheat Research, 6(1), 59-63. https://sawbar.in/wp-content/uploads/2018/07/41949-97915-1-SM.pdf
  30. Petnual P., Sangvanich, P., & Karnchanatat, A. (2010). A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and α-glucosidase inhibitory activities. Food Science and Biotechnology, 19, 907-916. https://doi.org/10.1007/s10068-010-0128-5
  31. Philippine Statistics Authority. (n.d.). 2016-2020 crops statistics of the Philippines. https://psa.gov.ph/sites/default/files/Crops%20Statistics%20of%20the%20Philippines%202016-2020.pdf
  32. Redo, M. C., Rios, J. L., & Villar, A. (1989). A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978-1988. Phytotherapy Research, 3(4), 117-125. https://doi.org/10.1002/ptr.2650030402
  33. Ren, X., Branà, M. T., Haidukowski, M., Gallo, A., Zhang, Q., Logrieco, A. F., Li, P., Zhao, S., & Altomare, C. (2022). Potential of Trichoderma spp. for biocontrol of aflatoxin-producing Aspergillus flavus. Toxins, 14(2), 86. https://doi.org/10.3390/toxins14020086
  34. Sani, M. N. H., & Yong, J. W. H. (2022). Harnessing synergistic biostimulatory processes: A plausible approach for enhanced crop growth and resilience in organic farming. Biology, 11(1), 41. https://doi.org/10.3390/biology11010041
  35. Saran, M. K., Ram, D., Verma, J. R., & Choudhary, A. (2021). Effect of different plant extracts and bio-agents against collar rot of groundnut caused by Aspergillus niger van tiegham. Biopesticides International, 17(2). 159-162. https://connectjournals.com/02196.2021.17.159
  36. Sarfraz, M., Nasim, M. J., Jacob, C., & Gruhlke, M. C. H. (2020). Efficacy of allicin against plant pathogenic fungi and unveiling the underlying mode of action employing yeast based chemogenetic profiling approach. Applied Sciences, 10(7), 2563. https://doi.org/10.3390/app10072563
  37. Sarker, S. D., & Nahar, L. (2004). Natural medicine: The genus Angelica. Current Medicinal Chemistry, 11(11), 1479–1500. https://doi.org/10.2174/0929867043365189
  38. Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: The defense of a dangerous passage. Frontiers in Plant Science, 5, 470. https://doi.org/10.3389/fpls.2014.00470
  39. Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147(4), 2147-2163. https://doi.org/10.1104/pp.108.123810
  40. Sivan, A., & Chet, I. (1986). Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum. Journal of Phytopathology, 116(1), 39-47. https://doi.org/10.1111/j.1439-0434.1986.tb00892.x
  41. Soares, F., Fernandes, C., Silva, P., Pereira, L., & Gonçalves, T. (2016). Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. Journal of Applied Phycology, 28(5), 2991-2998. https://doi.org/10.1007/s10811-016-0849-9
  42. Talley, S. M., Coley, P. D., & Kursar, T. A. (2002). The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecology, 2(7), 1-11. https://doi.org/10.1186/1472-6785-2-7
  43. Teles, A., dos Santos, B. A., Ferreira, C. G., Mouchreck, A. N., Calabrese, K. S., Abreu-Silva, A. L., & Almeida-Souza, F. (2020). Ginger (Zingiber officinale) antimicrobial potential: A review. In H. Wang (Ed.), Ginger cultivation and its antimicrobial and pharmacological potentials. IntechOpen. https://doi.org/10.5772/intechopen.89780
  44. Triasih, U., Abadi, A. L., Muhibbudin, A., & Widyaningsih, S. (2022, October 19). Uji beberapa jamur antagonis terhadap Colletotrichum gloeosporiodes penyebab penyakit busuk buah apel manalagi (Malus sylvestris) secara in vitro [Conference session]. Agropross: National Conference Proceedings of Agriculture, Indonesia. https://doi.org/10.25047/agropross.2022.309
  45. Yadav, S. K., Sah, A. K., Jha, R. K., Sah, P., & Shah, D. K. (2013). Turmeric (curcumin) remedies gastroprotective action. Pharmacognosy Reviews, 7(13), 42–46. https://doi.org/10.4103/0973-7847.112843