HomeHimal-us: Guimaras State College Multidisciplinary Research Journalvol. 10 no. 1 (2018)

GROWTH AND YIELD PERFORMANCE OF POTTED BELL PEPPER APPLIED WITH BIOCHAR

Rhea Joy Flora | Julius Vergara | Vivian Andaya | Rodrigo Paglomutan Jr | Joel Japitana | Edgardo Reyes | Lilian Diana Parreño

Discipline: agricultural sciences

 

Abstract:

Biochar is a charcoal used as a soil amendment. It is a stable solid, rich in carbon, and can endure in the ground for thousands of years. The process of producing biochar is the same when making charcoal, but with the aid of a modified burner. This study was conducted to determine the growth and yield performance of potted bell pepper using Biochar as soil amendment. The growth parameters were plant height (cm.) and leaf growth while the yield parameters were fruit weight (grams) and fruit diameter (cm.). The research design was Complete Randomized Design. There was no significant difference in the growth performance during the first data gathering, but the number of leaves showed a significant difference, wherein bell pepper planted on a soil media added with different levels of Biochar showed better performance than those with no Biochar. Furthermore, a significant difference was observed during the second to fourth data gathering for both plant height, and leaves. The potted bell pepper applied with different levels of Biochar showed better performance than those with no Biochar applications. As to yield performance of bell pepper, the fruit diameter and weight showed a significant difference when because some bell peppers without biochar additive did not bear fruits. Therefore, the different levels of Biochar application as soil amendment significantly resulted in better yield performance of bell pepper up to the fourth harvest. The Biochar applications of up to 3.0kgs significantly resulted in better growth and yield performance of the potted bell pepper.



References:

  1. Amin, A.E.B., & Eissa, M. (2017). Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. Journal of Soil Science and Plant Nutrition, 17(4), 912-921. http://dx.doi.org/10.4067/S0718-95162017000400006
  2. Baldock, J., & Smernik, R. (2002). Chemical composition and bioavailability of thermally altered Pinusresinosa (Red pine) wood. Organic Geochemistry, 33(9), 1093–1109. DOI:10.1016/S0146-6380(02)00062-1
  3. Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing waterholding capacity of sandy soils. Global Change Biology Bioenergy,5, 132-143. doi: 10.1111/gcbb.12026
  4. Carter, S., Shackley, S., Sohi, S., Suy, T., & Haefele, S. (2013). The Impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3, 404-418. https://doi.org/10.3390/agronomy3020404
  5. Chan, K., Zwieten, L. V., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic Values of Green waste Biochar as a Soil Amendment. Australian Journal of Soil Research, 45(8), 629-634.  DOI:10.1071/SR07109
  6. French, E., & Iyer-Pascuzzi (2018). A role for the gibberellin pathway in biochar-mediated growth promotion. Scientific Reports, 8(5389). https://doi.org/10.1038/s41598-018-23677-9
  7. Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L.A, & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633. DOI:10.2134/agronj2009.0083
  8. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review. Biology Fertility Soils, 35, 219-230. https://doi.org/10.1007/s00374-002-0466-4
  9. Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., Tsechansky, Borenshtein, M., Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil, 337(1), 481-496. DOI:10.1007/s11104-010-0544-6
  10. Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., & Riha, S. (2013). Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil, 365, 239–254. Retrieved from https://www.jstor.org/stable/42952347
  11. Guerero, M., Ruiz, M.P., Alzueta, M., Bilbao, R., & Millera, A., (2005). Pyrolysis of eucalyptus at different heating rate: Studies of char characterization and Oxidatove reactivity. Journal of Analytical and Applied Pyrolysis, 74, 307-314. https://doi.org/10.1016/j.jaap.2004.12.008
  12. Gupta, R., and Chakrabarty, S.K. (2013). Gibberellic acid in plant: still a mystery unresolved. Plant Signaling & Behaviour, 8(9). https://doi.org/10.4161/psb.25504
  13. Ioannidou, O., and Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable & Sustainable Energy Reviews, 11, 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013
  14. Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A.C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystem & Environment, 144(1), 175-187. DOI: 10.1016/j.agee.2011.08.015
  15. Ke, H., Zhang, Q., & Liu, G. (2018). Effects of wood biochar addition on growth of cherry radish (Raphanus sativus L. var. radculus pers). IOP Conference Series Earth and Environment Sciences 128 (1): 012182. DOI:10.1088/1755.128/1/012182
  16. Laird, D.A. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 178-181. https://doi.org/10.2134/agronj2007.0161
  17. Laird, D.A., Brown, R.C.,  Amonette, J.E.,  Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3, 547-562. https://doi.org/10.1002/bbb.169
  18. Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387. http://dx.doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
  19. Lehmann, J., Gaunt, J., Rondon, M. (2006). Biochar Sequestration in  Terrestial Ecosystem – A Review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427. DOI: 10.1007/s11027005.9006-5
  20. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O‘Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., & Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. https://doi.org/10.2136/sssaj2005.0383
  21. Nguyen, T. H., Brown, R. A., & Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood car, and sediment. Organic Geochemistry, 35(3), 217-234.  https://doi.org/10.1016/j.orggeochem.2003.09.005
  22. Pietikainen, J., Kiikkila, O., & Fritze, H., (2003). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikus, 89(2), 231-242. DOI: 10.1034/j.16000706.2000.890203.x
  23. Rollon, R. J. C., Galleros, J. E. V., Galos, G. R., Villasica, L. J., D., & Garcia, C. M. (2017). Growth and nutrient uptake of Paraserianthes falcataria (L.) as affected by carbonized rice hull and arbuscular mycorrhizal fungi grown in an artificially copper contaminated soil. AAB Bioflux, 9(2), 57-67. Retrieved from http://www.aab.bioflux.com.ro/docs/2017.57-67.pdf
  24. Rondon, M.A., Lehmann, J., Ramirez, J., Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils 43, 699-708. https://doi.org/10.1007/s00374-006-0152-z
  25. Schmidt, M., & Noack, A. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777-793. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999GB001208
  26. Steiner, C., Wenceslau, T. G., Lehmann, J., Nehls, T., Vasconcelos de Macedo, J. L., Blum, W. E. H., & Zech, W. (2007). Long Term Effects of Manure, Charcoal and Mineral Fertilization on Crop Production and Fertility on a Highly Weathered Central Amazonian Upland Soil. Plant and Soil, 291(1), 275-290. DOI: 10.1007/s11104-007-9193-9
  27. Stephenson, A. (2003). Flower and fruit abortion: Proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12(1): 253-279. DOI: 10/1146/annurev.es.12.110181.001345
  28. Warnock, D., Lehmann, J., Kuper, T., Rillig, M. (2007). Mycorrhizal responses to biochar in soil – Concepts and mechanisms. Plant and Soil, 300 (1-2), 9-20. DOI: 10.1007/s11104-007-9193-9
  29. Zheng, H., Wang, Z., Luo, Y., Deng, X., Herbert, S., and Xing, B., (2013). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289-296. DOI: 10.1016/j.envpol.2012.12.003