EVALUATION OF THE ANTIMICROBIAL ACTIVITY OF CELLULOLYTIC BACILLUS SPP. ISOLATED FROM RICE PADDY FIELDS IN THE PHILIPPINES
JEZEL O. BANGGA | JESSICA MARIE B. BAÑARES | GARY ANTONIO C. LIRIO
Discipline: Health Science
Abstract:
Drug-resistant strains are becoming a public health problem as antibiotic-resistant diseases become
more prevalent in clinical settings throughout the world. Multidrug-resistant microorganisms are constantly
adapting to the effects of currently produced antibiotics by inactivating them via a variety of mechanisms. To
address this issue, microbial natural sources isolated from various settings are being used to meet the demand for
new antimicrobials. On this study, Bacillus species were isolated from rice field soils and their enzyme production
and antibacterial activity were determined using plate techniques and agar-well diffusion assays. The results
revealed that all isolates synthesized cellulase, with strain BI-AI.1 exhibiting the largest hydrolysis zone of
2.07±1.07 mm. Bacillus cell-free supernatant (CFS) from strains NE-AIII.10, BI-BI.7, and BI-CI.2 also
demonstrated antimicrobial activity against Enterococcus faecalis, Micrococcus luteus, and Candida albicans.
Only NE-AIII.10 and BI-BI.7 inhibited Gram-negative Klebsiella pneumoniae (8.25±0.12 mm) and Aeromonas
hydrophila (2.91±0.72 mm) with p-values of 0.00002 and 0.00006, respectively. Interestingly, Bacillus BI.CI.2
inhibited methicillin-resistant Staphylococcus aureus (MRSA) with a zone of inhibition (ZOI) of 9.83±0.44 mm
(p = 0.0005). Bacillus CFS Minimum Inhibitory Concentration (MIC) assays revealed the inhibition of test
pathogens at varied concentration ratios. Molecular identification of the top strains NE-AIII-10 and BI-BI.7 using
16s rRNA gene sequence analysis showed similarities of the isolates to Bacillus subtilis. The findings established
the presence of cellulolytic Bacillus species in the soils of Philippine rice paddy fields. Additional investigation
of the Bacillus CFS is required to confirm the presence of the active components responsible for the inhibitory
effects against test pathogens.
References:
- Acharya, T. (2015). Voges-Proskauer Test: Principle, Procedure and Results. Microbe Online. https://microbeonline.com/voges-proskauer-test-principle-procedure-results/
- Ahmed B., Nigar S., Shah adaf A., Bashir S., Ali J., Yousaf S., & Bangash, J.A. (2013). Isolation and indentification of cellulose degrading bacteria from municipal waste and their screening for potential antimicrobial activity. World Applied Sciences Journal, 27(11): 1420–1426.
- Amin M., Rakhisi Z., & Ahmady, A.Z. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection. https://doi:10.17795/ajcmi-23233
- Aryal S. (2019). Triple Sugar Iron Test: Principles, Uses, Results, Interpretation with precautions. Microbiology Info. https://microbiologyinfo.com/triple-sugar-iron-tsitest/
- Aween M., Hassan Z., Belal J., Muhialdin H., Noor M., & Eljamel Y.A. (2012). Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. American Journal of Applied Sciences. ISSN 1546-9239. 9(6): 807–817.
- Bassiri E. (2017). Diagnostic tests for identification of bacteria. Student Manual on Pure Culture Techniques. Retrieved from https://www.sas.upenn.edu/LabManuals/biol275/Table_of_Contents_files/5-PureCulture
- Behera B.C., Sethi B.K., Mishra R.R., Dutta S.K., & Thatoi H.N. (2016). Microbial cellulases – Diversity and biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15:197–210.
- Bergey, D. H., Krieg, N. R., & Holt, J. G. (1984). Genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.), Bergey's manual of systematic bacteriology (pp. 21– 128). Baltimore, MD: Williams & Wilkins.
- Bhich Thuy D.T. & Bose S.K. (2011). Characterization of multiple extracellular proteases produced by a Bacillus subtilis strain and identification of the strain. International Journal of Biology. ISSN1916-9671. 3(1): 101–110
- Bishnu S., Sharan K.H., Donald G., Nootharin J., & Hyun H.J. (2016). Biological control of activities of rice associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. Research article. DOI:10.1371/journal.pone.0146764.
- Celandroni F., Salvetti S., Gueye S.A., Mazzantin D., Lupetti A., Senesi S., & Ghelardii, E. (2016). Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One.11(3):e0152831. doi: 10.1371/journal.pone. 0152831.
- Chait, R., Vetsigian, K., Kishony, R. (2012). What counters antibiotic resistance in nature? Nature Chemical Biology. 8: 1–5. https://www.nature.com/naturechemicalbiology.
- Chantarasiri, A. (2015). Aquatic Bacillus cereusJD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian Journal of Aquatic Research. 41: 257–264. http://dx.doi.org/10.1016/j.ejar.2015.08.003.
- Coates A.R.M., Hall G., & Hu Y. (2011). Novel classes of antibiotics or more of the same? A Review. British Journal of Pharmacology, 163:184–194. DOI:10.1111/j.1476- 5381.2011.01250.x
- Cowan, M.M. (1999). Plant products as antimicrobial agents. American Society for Microbiology. 12(4): 564–582.
- Dibyangana R, Biswas T., Mukhopadhyay S., Das S.K., & Gupta, S. (2014). Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemistry Research International, Vol. 2014, Article ID 568141, 5 pages. doi:10.1155/2014/568141
- Dorman, H.J.D. & Deans S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88: 308–316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC88925/
- Giri, D. (2015). Methyl-Red Test: Principle, Procedure and Interpretation. LaboratoryInfo. https://laboratoryinfo.com/methyl-red-test/
- Hatami S., Alikhsni H.A., Besharati H., Salehrastin N., Afrousheh M., & Jahromi, Z.Y. (2008). Investigation of aerobic cellulolytic bacteria in some of north forest and farming soils. The American-Eurasian Journal of Agricultural & Environmental Sciences, 5:713–716.
- Humam N.A. (2016). Heat-shock technique for isolation of soil Bacillus species with potential of antibiotics secretion in Saudi Arabia. British Microbiology Research Journal. DOI: 10.9734/BMRJ/2016/29126
- Kasana R.C., Salwan R., Dhar H., Dutt S., & Gulati A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 55: 503–507.
- Khianggam S., Pootaeng-on Y., Techakriengkrai T., & Tanasupawat, S. (2014). Screening and identification of cellulase producing bacteria isolated from oil palm meal. Journal of Applied Pharmaceutical Science. 4(04): 90-96. DOI: 10.7324/JAPS.2014.40416 from http://www.japsonline.com
- Logan N. A. & Berkeley R.C.W. (1984). Identification of Bacillus Strains using the API system. Journal of General Microbiology. 139. 1871–1 882.
- Logan N.A. (2011). Bacillus and relative foodborne illness. Journal of Applied Microbiology, 112(3):417–29. doi: 10.1111/j.1365-2672.2011.05204.x.
- Lynd L.R., Weimer P.J., van Zyl W.H., & Pretorius, I.S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 66(3): 506– 577. doi: 10.1128/MMBR.66.3.506-577.2002
- MacWilliams, M.P. (2009). Citrate Test Protocol. Publication Manual of the American Society for Microbiology (2019). http://www.microbelibrary.org/component/resource/laboratory-test/3203-citrate-testprotocol
- Mg Mg Z.L., Than W.M., & Myint M. (2015). Study on the cellulase enzyme producing activity of bacteria isolated from manure waste and degrading soil. International Journal of Technical Research and Applications. 3(6): 165–169 from www.ijitra.com
- Munita J.M., & Arias C.A. (2016). Mechanisms of antibiotic resistance. Microbiology spectrum, 4(2): 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
- Murthy N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. The Internet Journal of Microbiology. Volume 10 Number 2. Retrieved from https://ispub.com/IJMB/10/2/14186
- Nicholson W.L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences. 59: 410–416.
- Ochiai A., Itoh T., Kawamata A., Hashimoto W., & Murata, K. (2007). Plant cell wall degradation by saprophytic Bacillus subtilis strains: Gene clusters responsible for rhamnogalacturonan depolymerization. Applied and Environmental Microbiology, 73(12): 3803–3813; doi:10.1128/AEM.00147-07
- Ogunmwonyo I.N., Igbinosa O.E., Aiyegoro O.A., & Odjadjare E.E. (2008). Microbial analysis of different top soil samples of selected site in Obafemi Awolowo University, Nigeria. Scientific Research and Essay. 3 (3): 120–124. http://www.academicjournal.org.
- Panda M.K., Sahu M.K. & Tayung, K. (2013). Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabolo, Odisha, India. Iranian Journal of Microbiology. 5(2): 159–165. http://ijm.tums.ac.ir
- Pokhrel, B., Bashyal, B., & Magar, R.T. (2014). Production, purification and characterization of cellulase from Bacillus subtilis isolated from soil. European Journal of Biotechnology and Bioscience. 2(5).31–37
- Powthong P. & Suntornthiticharoen P. (2017). Antimicrobial and enzyme activity produced by Bacillus spp. isolated from soil. International Journal of Pharmacy and Pharmaceutical Sciences, 9(3): 205–210. http://dx.doi.org/10.22159/ijpps.2017v9i3. 13895
- Prescott M.L., Harley P.J., & Klein., A.D. (2008). Microbiology 7th edition. Publishing Group; 42-51, 232–233, 762-764.
- Priest, F.G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews. 41(3):711–753.
- Ramachandran R., Chalasani A.G., Lal R., & Roy U. (2014). A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1. The Scientific World Journal. Article ID 968487, 10 pages. Retrieved from http://dx.doi.org/10.1155/2014/968487
- Reiner, Karen. (2010). Catalase Test Protocol. American Society for Microbiology, Bartlett Publishers, Inc., Sudbury, MA. Retrieved from http://www.asmscience.org
- Saima K. & Roohi A. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genet Eng Biotechnol, 11(1): 39–46.
- Salleh F., Lani L.M., & Ismail N., (2014). Antimicrobial activity of cell free supernatant of lactic acid bacteria isolated from fermented durian flesh against multiple resistance’s Salmonella associated with food poisoning cases in Malaysia. IOSR J Pharm Biol Sci (IOSR-JPBS), 9(6), Ver. IV. Retrieved from: www.iosrjournals.org
- Smily J.M.B., Jacob V., & Ravi Kumar M. (2012). Soil microflora of paddy fields among different rice farming system. J Acad Indus Res, Vol. 1(1).
- Solomon, K. (2005). The occurrence, fate, and ecotoxicological effects of veterinary antibiotics used in the beef cattle industry. Research and Technology Development for the Canadian Beef Industry. http://www.beefresearch.ca/fact-sheets/effect-ofantimicrobials-on-soil-and-water
- Sriariyanum, M., Tantayota, P., Yasurin, P., Pornwongthong, P., & Cheenkachorn, C. (2016). Production, purification, and characterization of an Ionic Liquid Tolerant Cellulase from Bacillus sp. isolated from rice paddy field soil. Electron J Biotechnol, 19 (2016), 23–28. http://dx.doi.org/10.1016/j.ejbt.2015.11.002
- Sun L., Pope P.B., Eijsink V.G.H., & Schnürer A. (2015). Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol, 8 (5): 815-827. DOI: 10.1111/1751–7915.12298
- Tantiado R.G., Tajo M.S.E., & Estrella K.J. (2016). Antibacterial Screening of Soil Bacteria Isolates from Guimaras Island, Philippines against Escherichia coli and Staphylococcus aureus. Int J Bio Sci Bio Tech, 8(2): 419–432. http://dx.doi.org/10.14257/ijbsbt.2016.8.2.39
- Taprig T., Tanasupawat S., & Acharacharanya, A. (2015). Screening and identification of cellulase-producing bacteria from Thai soil: “Biotechnology: Benefits & Bioethics”, presented at the 18th Annual Meeting of the Thai Society for Biotechnology. http://www.thaiscience.info/Article%20for%20ThaiScience/Article/2/10031870
- Thakham, N., Thaweesak, S., Teerakulkittipong, N., Traiosot, N., Kaikaew, A., Lirio, G. A., & Jangiam, W. (2020). Structural Characterization of Functional Ingredient Levan Synthesized by Bacillus siamensis Isolated from Traditional Fermented Food in Thailand. In Int J Food Sci (Vol. 2020, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2020/7352484
- Thamthiankul S., Suan-Ngay S., Tantimavanich S., & Panbangred, W. (2001). Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol, 56:395–401. DOI 10.1007/s002530100630
- Turnbull, P.C. (1996). Antimicrobial Chemotherapy. In S. Baron (Ed), Medical Microbiology (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston. https://www.ncbi.nlm.nih.gov/books/NBK7627/
- Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G. (2004). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211.
- Waldeck J., Daum G., Bisping B., & Meinhardt F. (2006). Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous methodology. Iran J Pharm Res. 10(4): 759–768.
ISSN 2546-0749 (Online)
ISSN 1908-9058 (Print)