HomePUP Journal of Science and Technologyvol. 12 no. 1 (2019)

EVALUATION OF THE ANTIMICROBIAL ACTIVITY OF CELLULOLYTIC BACILLUS SPP. ISOLATED FROM RICE PADDY FIELDS IN THE PHILIPPINES

JEZEL O. BANGGA | JESSICA MARIE B. BAÑARES | GARY ANTONIO C. LIRIO

Discipline: Health Science

 

Abstract:

Drug-resistant strains are becoming a public health problem as antibiotic-resistant diseases become more prevalent in clinical settings throughout the world. Multidrug-resistant microorganisms are constantly adapting to the effects of currently produced antibiotics by inactivating them via a variety of mechanisms. To address this issue, microbial natural sources isolated from various settings are being used to meet the demand for new antimicrobials. On this study, Bacillus species were isolated from rice field soils and their enzyme production and antibacterial activity were determined using plate techniques and agar-well diffusion assays. The results revealed that all isolates synthesized cellulase, with strain BI-AI.1 exhibiting the largest hydrolysis zone of 2.07±1.07 mm. Bacillus cell-free supernatant (CFS) from strains NE-AIII.10, BI-BI.7, and BI-CI.2 also demonstrated antimicrobial activity against Enterococcus faecalis, Micrococcus luteus, and Candida albicans. Only NE-AIII.10 and BI-BI.7 inhibited Gram-negative Klebsiella pneumoniae (8.25±0.12 mm) and Aeromonas hydrophila (2.91±0.72 mm) with p-values of 0.00002 and 0.00006, respectively. Interestingly, Bacillus BI.CI.2 inhibited methicillin-resistant Staphylococcus aureus (MRSA) with a zone of inhibition (ZOI) of 9.83±0.44 mm (p = 0.0005). Bacillus CFS Minimum Inhibitory Concentration (MIC) assays revealed the inhibition of test pathogens at varied concentration ratios. Molecular identification of the top strains NE-AIII-10 and BI-BI.7 using 16s rRNA gene sequence analysis showed similarities of the isolates to Bacillus subtilis. The findings established the presence of cellulolytic Bacillus species in the soils of Philippine rice paddy fields. Additional investigation of the Bacillus CFS is required to confirm the presence of the active components responsible for the inhibitory effects against test pathogens.



References:

  1. Acharya, T. (2015). Voges-Proskauer Test: Principle, Procedure and Results. Microbe Online. https://microbeonline.com/voges-proskauer-test-principle-procedure-results/
  2. Ahmed B., Nigar S., Shah adaf A., Bashir S., Ali J., Yousaf S., & Bangash, J.A. (2013). Isolation and indentification of cellulose degrading bacteria from municipal waste and their screening for potential antimicrobial activity. World Applied Sciences Journal, 27(11): 1420–1426.
  3. Amin M., Rakhisi Z., & Ahmady, A.Z. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection. https://doi:10.17795/ajcmi-23233
  4. Aryal S. (2019). Triple Sugar Iron Test: Principles, Uses, Results, Interpretation with precautions. Microbiology Info. https://microbiologyinfo.com/triple-sugar-iron-tsitest/
  5. Aween M., Hassan Z., Belal J., Muhialdin H., Noor M., & Eljamel Y.A. (2012). Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. American Journal of Applied Sciences. ISSN 1546-9239. 9(6): 807–817.
  6. Bassiri E. (2017). Diagnostic tests for identification of bacteria. Student Manual on Pure Culture Techniques. Retrieved from https://www.sas.upenn.edu/LabManuals/biol275/Table_of_Contents_files/5-PureCulture
  7. Behera B.C., Sethi B.K., Mishra R.R., Dutta S.K., & Thatoi H.N. (2016). Microbial cellulases – Diversity and biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15:197–210.
  8. Bergey, D. H., Krieg, N. R., & Holt, J. G. (1984). Genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.), Bergey's manual of systematic bacteriology (pp. 21– 128). Baltimore, MD: Williams & Wilkins.
  9. Bhich Thuy D.T. & Bose S.K. (2011). Characterization of multiple extracellular proteases produced by a Bacillus subtilis strain and identification of the strain. International Journal of Biology. ISSN1916-9671. 3(1): 101–110
  10. Bishnu S., Sharan K.H., Donald G., Nootharin J., & Hyun H.J. (2016). Biological control of activities of rice associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. Research article. DOI:10.1371/journal.pone.0146764.
  11. Celandroni F., Salvetti S., Gueye S.A., Mazzantin D., Lupetti A., Senesi S., & Ghelardii, E. (2016). Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One.11(3):e0152831. doi: 10.1371/journal.pone. 0152831.
  12. Chait, R., Vetsigian, K., Kishony, R. (2012). What counters antibiotic resistance in nature? Nature Chemical Biology. 8: 1–5. https://www.nature.com/naturechemicalbiology.
  13. Chantarasiri, A. (2015). Aquatic Bacillus cereusJD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian Journal of Aquatic Research. 41: 257–264. http://dx.doi.org/10.1016/j.ejar.2015.08.003.
  14. Coates A.R.M., Hall G., & Hu Y. (2011). Novel classes of antibiotics or more of the same? A Review. British Journal of Pharmacology, 163:184–194. DOI:10.1111/j.1476- 5381.2011.01250.x
  15. Cowan, M.M. (1999). Plant products as antimicrobial agents. American Society for Microbiology. 12(4): 564–582.
  16. Dibyangana R, Biswas T., Mukhopadhyay S., Das S.K., & Gupta, S. (2014). Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemistry Research International, Vol. 2014, Article ID 568141, 5 pages. doi:10.1155/2014/568141
  17. Dorman, H.J.D. & Deans S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88: 308–316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC88925/
  18. Giri, D. (2015). Methyl-Red Test: Principle, Procedure and Interpretation. LaboratoryInfo. https://laboratoryinfo.com/methyl-red-test/
  19. Hatami S., Alikhsni H.A., Besharati H., Salehrastin N., Afrousheh M., & Jahromi, Z.Y. (2008). Investigation of aerobic cellulolytic bacteria in some of north forest and farming soils. The American-Eurasian Journal of Agricultural & Environmental Sciences, 5:713–716.
  20. Humam N.A. (2016). Heat-shock technique for isolation of soil Bacillus species with potential of antibiotics secretion in Saudi Arabia. British Microbiology Research Journal. DOI: 10.9734/BMRJ/2016/29126
  21. Kasana R.C., Salwan R., Dhar H., Dutt S., & Gulati A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 55: 503–507.
  22. Khianggam S., Pootaeng-on Y., Techakriengkrai T., & Tanasupawat, S. (2014). Screening and identification of cellulase producing bacteria isolated from oil palm meal. Journal of Applied Pharmaceutical Science. 4(04): 90-96. DOI: 10.7324/JAPS.2014.40416 from http://www.japsonline.com
  23. Logan N. A. & Berkeley R.C.W. (1984). Identification of Bacillus Strains using the API system. Journal of General Microbiology. 139. 1871–1 882.
  24. Logan N.A. (2011). Bacillus and relative foodborne illness. Journal of Applied Microbiology, 112(3):417–29. doi: 10.1111/j.1365-2672.2011.05204.x.
  25. Lynd L.R., Weimer P.J., van Zyl W.H., & Pretorius, I.S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 66(3): 506– 577. doi: 10.1128/MMBR.66.3.506-577.2002
  26. MacWilliams, M.P. (2009). Citrate Test Protocol. Publication Manual of the American Society for Microbiology (2019). http://www.microbelibrary.org/component/resource/laboratory-test/3203-citrate-testprotocol
  27. Mg Mg Z.L., Than W.M., & Myint M. (2015). Study on the cellulase enzyme producing activity of bacteria isolated from manure waste and degrading soil. International Journal of Technical Research and Applications. 3(6): 165–169 from www.ijitra.com
  28. Munita J.M., & Arias C.A. (2016). Mechanisms of antibiotic resistance. Microbiology spectrum, 4(2): 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  29. Murthy N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. The Internet Journal of Microbiology. Volume 10 Number 2. Retrieved from https://ispub.com/IJMB/10/2/14186
  30. Nicholson W.L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences. 59: 410–416.
  31. Ochiai A., Itoh T., Kawamata A., Hashimoto W., & Murata, K. (2007). Plant cell wall degradation by saprophytic Bacillus subtilis strains: Gene clusters responsible for rhamnogalacturonan depolymerization. Applied and Environmental Microbiology, 73(12): 3803–3813; doi:10.1128/AEM.00147-07
  32. Ogunmwonyo I.N., Igbinosa O.E., Aiyegoro O.A., & Odjadjare E.E. (2008). Microbial analysis of different top soil samples of selected site in Obafemi Awolowo University, Nigeria. Scientific Research and Essay. 3 (3): 120–124. http://www.academicjournal.org.
  33. Panda M.K., Sahu M.K. & Tayung, K. (2013). Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabolo, Odisha, India. Iranian Journal of Microbiology. 5(2): 159–165. http://ijm.tums.ac.ir
  34. Pokhrel, B., Bashyal, B., & Magar, R.T. (2014). Production, purification and characterization of cellulase from Bacillus subtilis isolated from soil. European Journal of Biotechnology and Bioscience. 2(5).31–37
  35. Powthong P. & Suntornthiticharoen P. (2017). Antimicrobial and enzyme activity produced by Bacillus spp. isolated from soil. International Journal of Pharmacy and Pharmaceutical Sciences, 9(3): 205–210. http://dx.doi.org/10.22159/ijpps.2017v9i3. 13895
  36. Prescott M.L., Harley P.J., & Klein., A.D. (2008). Microbiology 7th edition. Publishing Group; 42-51, 232–233, 762-764.
  37. Priest, F.G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews. 41(3):711–753.
  38. Ramachandran R., Chalasani A.G., Lal R., & Roy U. (2014). A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1. The Scientific World Journal. Article ID 968487, 10 pages. Retrieved from http://dx.doi.org/10.1155/2014/968487
  39. Reiner, Karen. (2010). Catalase Test Protocol. American Society for Microbiology, Bartlett Publishers, Inc., Sudbury, MA. Retrieved from http://www.asmscience.org
  40. Saima K. & Roohi A. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genet Eng Biotechnol, 11(1): 39–46.
  41. Salleh F., Lani L.M., & Ismail N., (2014). Antimicrobial activity of cell free supernatant of lactic acid bacteria isolated from fermented durian flesh against multiple resistance’s Salmonella associated with food poisoning cases in Malaysia. IOSR J Pharm Biol Sci (IOSR-JPBS), 9(6), Ver. IV. Retrieved from: www.iosrjournals.org
  42. Smily J.M.B., Jacob V., & Ravi Kumar M. (2012). Soil microflora of paddy fields among different rice farming system. J Acad Indus Res, Vol. 1(1).
  43. Solomon, K. (2005). The occurrence, fate, and ecotoxicological effects of veterinary antibiotics used in the beef cattle industry. Research and Technology Development for the Canadian Beef Industry. http://www.beefresearch.ca/fact-sheets/effect-ofantimicrobials-on-soil-and-water
  44. Sriariyanum, M., Tantayota, P., Yasurin, P., Pornwongthong, P., & Cheenkachorn, C. (2016). Production, purification, and characterization of an Ionic Liquid Tolerant Cellulase from Bacillus sp. isolated from rice paddy field soil. Electron J Biotechnol, 19 (2016), 23–28. http://dx.doi.org/10.1016/j.ejbt.2015.11.002
  45. Sun L., Pope P.B., Eijsink V.G.H., & Schnürer A. (2015). Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol, 8 (5): 815-827. DOI: 10.1111/1751–7915.12298
  46. Tantiado R.G., Tajo M.S.E., & Estrella K.J. (2016). Antibacterial Screening of Soil Bacteria Isolates from Guimaras Island, Philippines against Escherichia coli and Staphylococcus aureus. Int J Bio Sci Bio Tech, 8(2): 419–432. http://dx.doi.org/10.14257/ijbsbt.2016.8.2.39
  47. Taprig T., Tanasupawat S., & Acharacharanya, A. (2015). Screening and identification of cellulase-producing bacteria from Thai soil: “Biotechnology: Benefits & Bioethics”, presented at the 18th Annual Meeting of the Thai Society for Biotechnology. http://www.thaiscience.info/Article%20for%20ThaiScience/Article/2/10031870
  48. Thakham, N., Thaweesak, S., Teerakulkittipong, N., Traiosot, N., Kaikaew, A., Lirio, G. A., & Jangiam, W. (2020). Structural Characterization of Functional Ingredient Levan Synthesized by Bacillus siamensis Isolated from Traditional Fermented Food in Thailand. In Int J Food Sci (Vol. 2020, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2020/7352484
  49. Thamthiankul S., Suan-Ngay S., Tantimavanich S., & Panbangred, W. (2001). Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol, 56:395–401. DOI 10.1007/s002530100630
  50. Turnbull, P.C. (1996). Antimicrobial Chemotherapy. In S. Baron (Ed), Medical Microbiology (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston. https://www.ncbi.nlm.nih.gov/books/NBK7627/
  51. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G. (2004). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211.
  52. Waldeck J., Daum G., Bisping B., & Meinhardt F. (2006). Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous methodology. Iran J Pharm Res. 10(4): 759–768.