HomeDMMMSU Research and Extension Journalvol. 7 no. 1 (2023)

A review on the intensive, highly competitive and invasive nature of Picea: A basis for natural forest management of Picea for global ecological sustainability

Jomar L Aban | Weenalei T Fajardo | Godspower O Omokaro

Discipline: ecology and environmental biology

 

Abstract:

Species diversity and biogeography is basically affected by site history. To provide an insightful basis in understanding the current distribution of Picea, paleoecological and historical assessment must be undertaken. In this study, the current schematic distribution of Picea is re-evaluated using secondhand resources as baseline information in assessing their dispersal and colonization as affected by their strategic tolerance and resilient features making them one of those globally distributed species. Thirty refereed journals were used in this descriptive-type of metaanalysis to scrutinize the intensive life processes, highly competitive nature and invasive capacity of Picea to out-compete co-occurring species until the present day. Implications of this study can be used for conservation strategies more specifically in natural forest management plans to ensure that we go beyond saving and start promoting Picea species for sustainability most especially because this species is of great ecological and economic importance.



References:

  1. Aban, J. L. (2020). In Vitro Growth-promoting Properties of Non-dominant Root Symbiotic Fungi (ND-RSF) from Drynaria quercifolia L. and their Effects on PSB Rc10 Rice (Oryza sativa L.). Philippine Journal of Science, 149(3).
  2. Barry, R. G. (1992). Mountain climatology and past and potential future climatic changes in mountain regions: a review. Mountain Research and Development, 71-86.
  3. Battipaglia, G., Saurer, M., Cherubini, P., Siegwolf, R. T., & Cotrufo, M. F. (2009). Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecology and Management, 257(3), 820-828.
  4. Bezrukova, E. V., Abzaeva, A. A., Letunova, P. P., Kulagina, N. V., Vershinin, K. E., Belov, A. V., ... & Krapivina, S. M. (2005). Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International, 136(1), 47-57.
  5. Blödner, C., Skroppa, T., Johnsen, Ø., & Polle, A. (2005). Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance. Journal of plant physiology, 162(5), 549-558.
  6. Buchmann, N. (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32(11-12), 1625-1635.
  7. Burczyk, J., Lewandowski, A., & Chalupka, W. (2004). Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 197(1-3), 39-48.
  8. Chałupka, W., Mejnartowicz, L., & Lewandowski, A. (2008). Reconstitution of a lost forest tree population: A case study of Norway spruce (Picea abies [L.] Karst.). Forest ecology and management, 255(7), 2103-2108.
  9. Cox, C. B., Moore, P. D., & Ladle, R. J. (2016). Biogeography: an ecological and evolutionary approach. John Wiley & Sons.
  10. Di-Giovanni, F., Kevan, P. G., & Arnold, J. (1996). Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Management, 83(1-2), 87-97.
  11. Eichhorn, M. P., Baker, K., & Griffiths, M. (2020). Steps towards decolonising biogeography. Frontiers of Biogeography, 12(1).
  12. Eissenstat, D. M., Wells, C. E., Yanai, R. D., & Whitbeck, J. L. (2000). Building roots in a changing environment: implications for root longevity. The New Phytologist, 147(1), 33-42.
  13. Feurdean, A., Tanţău, I., & Fărcaş, S. (2011). Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. Quaternary Science Reviews, 30(21-22), 3060-3075.
  14. Goncharenko, G. G., Zadeika, I. V., & Birgelis, J. J. (1995). Genetic structure, diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in natural populations of Latvia. Forest Ecology and Management, 72(1), 31-38.
  15. Grossnickle, S. C., & Folk, R. S. (2007). Field performance potential of a somatic interior spruce seedlot. New Forests, 34(1), 51-72.
  16. He, X., & Kermode, A. R. (2010). Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolytic system. Plant and cell physiology, 51(10), 1707-1720.
  17. He, Z., Zhao, W., Liu, H., & Zhang, Z. (2010). Successional process of Picea crassifolia forest after logging disturbance in semiarid mountains: A case study in the Qilian Mountains, northwestern China. Forest ecology and management, 260(3), 396-402.
  18. Koo, K. A., Patten, B. C., & Creed, I. F. (2011). Picea rubens growth at high versus low elevations in the Great Smoky Mountains National Park: evaluation by systems modeling. Canadian journal of forest research, 41(5), 945-962.
  19. Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
  20. Klymiuk, A. A., & Stockey, R. A. (2012). A Lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae). American Journal of Botany, 99(6), 1069-1082.
  21. Latałowa, M., & van der Knaap, W. O. (2006). Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quaternary Science Reviews, 25(21-22), 2780-2805.
  22. Larsson, S. (1989). Stressful times for the plant stress: insect performance hypothesis. Oikos, 277-283.
  23. Liang, E., Shao, X., Eckstein, D., Huang, L., & Liu, X. (2006). Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236(2-3), 268-277.
  24. Lindbladh, M., Oswald, W. W., Foster, D. R., Faison, E. K., Hou, J., & Huang, Y. (2007). A late-glacial transition from Picea glauca to Picea mariana in southern New England. Quaternary Research, 67(3), 502-508.
  25. Ludley, K. E., Jickells, S. M., Chamberlain, P. M., Whitaker, J., & Robinson, C. H. (2009). Distribution of monoterpenes between organic resources in upper soil horizons under monocultures of Picea abies, Picea sitchensis and Pinus sylvestris. Soil Biology and Biochemistry, 41(6), 1050-1059.
  26. Lundqvist, L., Chrimes, D., Elfving, B., Mörling, T., & Valinger, E. (2007). Stand development after different thinnings in two uneven-aged Picea abies forests in Sweden. Forest Ecology and Management, 238(1-3), 141-146.
  27. Marchisio, C., Cescatti, A., & Battisti, A. (1994). Climate, soils and Cephalcia arvensis outbreaks on Picea abies in the Italian Alps. Forest ecology and management, 68(2-3), 375-384.
  28. Marmulla, R., & Harder, J. (2014). Microbial monoterpene transformations—a review. Frontiers in microbiology, 5, 98783.
  29. Martinek, V. (1987). The influence of emergence of the one-year generation on the increase in abundance of adult sawflies of the genus Cephalcia Pz.(Hym., Pamphiliidae).
  30. Maurer, J., Rebbapragada, V., Borson, S., Goldstein, R., Kunik, M. E., Yohannes, A. M., & Hanania, N. A. (2008). Anxiety and depression in COPD: current understanding, unanswered questions, and research needs. Chest, 134(4), 43S-56S.
  31. Mayr, S., Gruber, A., & Bauer, H. (2003). Repeated freeze–thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta, 217, 436-441.
  32. Misson, L., Vincke, C., & Devillez, F. (2003). Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management, 177(1-3), 51-63.
  33. Molinari, C., Bradshaw, R., Risbøl, O., Lie, M., Ohlson, M., (2005). Long-term vegetational history of a Picea abies stand in south-eastern Norway: Implications for the conservation of biological values. Biological Conservation 126, 155–165
  34. Nakagawa, M., Kurahashi, A., & Hogetsu, T. (2003). The regeneration characteristics of Picea jezoensis and Abies sachalinensis on cut stumps in the sub-boreal forests of Hokkaido Tokyo University Forest. Forest ecology and management, 180(1-3), 353-359.
  35. Nienstaedt, H. (1972). Genetics of white spruce (Vol. 15). US Department of Agriculture.
  36. Noshiro, S., Terada, K., Tsuji, S. I., & Suzuki, M. (1997). Larix-Picea forests of the Last Glacial Age on the eastern slope of Towada Volcano in northern Japan. Review of Palaeobotany and Palynology, 98(3-4), 207-222.
  37. Palin, R. M., & Santosh, M. (2021). Plate tectonics: What, where, why, and when?. Gondwana Research, 100, 3-24.
  38. Pastore, A. I., Barabás, G., Bimler, M. D., Mayfield, M. M., & Miller, T. E. (2021). The evolution of niche overlap and competitive differences. Nature Ecology & Evolution, 5(3), 330-337.
  39. Püttsepp, Ü., Lõhmus, K., Persson, H. Å., & Ahlström, K. (2006). Fine-root distribution and morphology in an acidic Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden in relation to granulated wood ash application. Forest ecology and management, 221(1-3), 291-298.
  40. Ran, J. H., Wei, X. X., & Wang, X. Q. (2006). Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Molecular phylogenetics and evolution, 41(2), 405-419.
  41. Ravazzi, C. (2002). Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and palynology, 120(1-2), 131-177.
  42. Rogers, C. A., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42, 65-72.
  43. Saa, A., Trasar-Cepeda, M. C., Gil-Sotres, F., & Carballas, T. (1993). Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biology and Biochemistry, 25(9), 1223-1230.
  44. Schmutzenhofer, H. (1985). Site characteristics and mass outbreaks of Cephalcia abietis in Austria.
  45. Schweiger, J., & Sterba, H. (1997). A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria. Forest Ecology and Management, 97(2), 107-118.
  46. Scotti, I., Gugerli, F., Pastorelli, R., Sebastiani, F., & Vendramin, G. G. (2008). Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies [L.] Karst.). Forest ecology and management, 255(11), 3806-3812.
  47. Shi, J., Shimizu, H., & Zou, C. (2010). Differentiation and population subdivision in Picea mongolica based on microsatellite analyses. Biochemical Systematics and Ecology, 38(6), 1122-1128.
  48. Skrøppa, T., & Lindgren, D. (1994). Male fertility variation and non-random segregation in pollen mix crosses of Picea abies. 13-22.
  49. Stern, R. J., & Gerya, T. V. (2023). Co-Evolution of Life and Plate Tectonics: The Biogeodynamic Perspective on the Mesoproterozoic-Neoproterozoic Transitions. In Dynamics of Plate Tectonics and Mantle Convection (pp. 295-319). Elsevier.
  50. Stockey, R. A., & Wiebe, N. J. (2008). Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov.(Pinaceae). Botany, 86(7), 649-657.
  51. Swain, E. Y., Perks, M. P., Vanguelova, E. I., & Abbott, G. D. (2010). Carbon stocks and phenolic distributions in peaty gley soils afforested with Sitka spruce (Picea sitchensis). Organic geochemistry, 41(9), 1022-1025.
  52. Richardson, D. M., & Whittaker, R. J. (2010). Conservation biogeography–foundations, concepts and challenges. Diversity and Distributions, 16(3), 313-320.
  53. Uusitalo, M., Kitunen, V., & Smolander, A. (2008). Response of C and N transformations in birch soil to coniferous resin volatiles. Soil Biology and Biochemistry, 40(10), 2643-2649.
  54. Wang, Y., Luo, J., Xue, X., Korpelainen, H., & Li, C. (2005). Diversity of microsatellite markers in the populations of Picea asperata originating from the mountains of China. Plant Science, 168(3), 707-714.
  55. Wilson, L. R., & Webster, R. M. (1946). Plant microfossils from a Fort Union coal of Montana. American journal of botany, 271-278.
  56. Xu, Z., Zhao, C., & Feng, Z. (2009). A study of the impact of climate change on the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains. Acta Ecologica Sinica, 29(5), 278-285.
  57. Zhao ChuanYan, Z. C., Nan ZhongRen, N. Z., Cheng GuoDong, C. G., Zhang JunHua, Z. J., & Feng ZhaoDong, F. Z. (2006). GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters.
  58. Yong-mei, Z., Wei-kai, B., Xue-yong, P., Ning, W., & Guo-yi, Z. (2005). Changes of soil enzyme activities in different restoration ages of spruce forests on the eastern Qinghai-Tibet Plateau. Wuhan University Journal of Natural Sciences, 10(4), 701-706.
  59. Zhang, Y. M., Wu, N., Zhou, G. Y., & Bao, W. K. (2005). Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 30(3), 215-225.