HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 5 no. 8 (2024)

Disaster Preparedness and Resiliency as Predictors among Residents Situated in Landslide-Prone Areas in Brgy. Matina Crossing

Roel Nickelson P. Solano | Elaiza Faith N. Catayas | Kinah S. Laurnal | Marc Joshua A. Saranillo

Discipline: social sciences (non-specific)

 

Abstract:

This research aims to determine the inter-relationship among the profile, disaster preparedness, and resiliency of the residents in Barangay 74-A Matina Crossing and what demographic profile significantly predicts resiliency as well as the disaster preparedness of the residents. It explores whether resiliency significantly predicts disaster preparedness among the identified residents. A survey was conducted on a convenience sample of 400 residents situated in a landslide-prone area in Barangay 74-A Matina Crossing using a 3-part structured questionnaire; the Demographic Profile of the residents, the Disaster Preparedness Index, and the Resiliency Scale. When grouped according to sex, it shows that 200 (50.0%) were males and 200 (50.0%) were females. The age groups have a total of 247 respondents (61.8%) with ages between 18-25 years old; 90 respondents (2.5%) with ages between 36- 39 years old; and 63 respondents (15.8%) with ages between 50-60 years old. The overall mean of the level of disaster preparedness is 2.66 with a standard deviation of 0.30, indicating that the disaster preparedness of respondents is well-prepared. The respondents obtained the descriptive interpretation of true nearly all the time mean ratings on meaningfulness/Purpose, and the other six variables: Self-Efficacy, Hardiness, Adaptability/Flexibility, Regulation of Emotion and Cognition, and Coping, had often true mean ratings. Findings highlight the significant associations of demographic profiles, disaster preparedness, and resiliency, while regression results show that the demographic profile did not significantly predict the resiliency of the residents. However, only adaptability/flexibility significantly predicts the disaster preparedness of the identified residents.



References:

  1. Aristizabal, E., & Sanchez, O. (2020). Spatial and temporal patterns and the socioeconomic impacts  of  landslides  in  the  tropical  and mountainous Colombian Andes. https://doi.org/10.1111/disa.12391
  2. Bandura, A. (1978). The self system in recipro-cal  determinism. American  Psychologist,33(4), 344-358. https://doi.org/10.1037/0003-066X.33.4.344
  3. Bera,  S.,  Guru,  B.,  Chatterjee,  R.,  and  Shaw,  R. (2020).   Geographic   Variation   of   Resili-ence  to  landslide  hazard:  A  household-based  comparative  studies  in  Kalimpong Hilly region India. https://doi.org/10.1016/j.ijdrr.2019.101456
  4. BRIA, 2021. Landslide Risk Reduction Schemes in the Philippines. https://www.bria.com.ph/articles/land-slide-risk-reduction-schemes-in-the-phil-ippines/#:~:text=Accord-ing%20to%20the%20Philip-pine%20government's,Indone-sia%2C%20India%2C%20and%20
  5. ChinaCabrera, F. (2022). More than 40  dead in Magu-indanao   del   Norte   Landslide,   flooding. Rappler. https://www.rappler.com/na-tion/mindanao/deaths-landslides-magu-indanao-del-norte-october-28-2022/
  6. CDRRMO  Davao,  (2022).  Residents  in  Land-slide,  Flood-Prone  areas  advised  to  be  on Alert. https://www.davaocity.gov.ph/dis-aster-risk-reduction-mitigation/resi-dents-in-landslide-flood-prone-areas-ad-vised-to-be-on-alert/
  7. Cayamanda, K.G. & Lopez, M.A. (2022). Commu-nity Resilience to Address Urban Vulnera-bilities: A Case Study of Flood-prone Com-munities.  International  Review  of  Social Sciences Research, Volume 2 Issue 3, pp. 1 -19. DOI: https://doi.org/10.53378/352898
  8. Cutter,  S.,  Ash,  K.,  &  Emrich,  C.  (2014).  The  ge-ographies  of  community  disaster  resili-ence. https://www.sciencedi-rect.com/science/arti-cle/abs/pii/S0959378014001459
  9. Davidson,  J.,  &  Connor,  K.  (2021).  Connor-Da-vidson Resiliency Scale. http://www.con-nordavidson-resiliencescale.com/
  10. Driver,  S.,  Warren,  A.M.,  Reynolds,  M,  Agtarap, S.,  Hamilton,  R.,  Trost,  Z.,  &  Monden,  K. (2016).  Identifying  predictors  of  resili-ence at inpatient and 3-month post-spinal cord  injury. J  Spinal  Cord  Med.  January, 2016; 39(1): 77–84. doi: 10.1179/2045772314Y.0000000270
  11. Filipino  News,  (2021).  Landslide  recorded  in Davao   City,   Davao   de   Oro.   https://fili-pino.news/2021/12/16/see-landslide-recorded-in-davao-city-davao-de-oro/
  12. GDFRR,   (2022).   Region   XI:   Davao   Region. https://thinkhazard.org/en/re-port/67161-philippines-region-xi-davao-region/
  13. Janatolmakan M, Torabi Y, Rezaeian S, Andaye-shgar  B,  Dabiry  A,  &  Khatony  A.,  (2021). The  Relationship  between  Resilience  and Academic  Burnout  among  Nursing   and Midwifery  Students  in  Kermanshah,  Iran. https://doi.org/10.1155/2021/6647012
  14. Jung, HM., Kim, N., Lee, Y., Kim, MS., & Kim, MJ. (2018)  The  effect  of  a  disaster  nursing convergence education program on disas-ter nursing knowledge, preparedness, and self-confidence  of  nursing  students.  Jour-nal  of  the  Korean  Convergence  Society. 9(1):377–386. https://doi.org/10.15207/JKCS.2018.9.1. 377
  15. Kimhi, S., Hantman, S., Goroshit, M., Eshel, Y., & Zysberg,  L.  (2012).  Elderly  people  coping with the aftermath of war: Resilience ver-sus vulnerability. DOI: 10.1097/JGP.0b013e31821106b3
  16. Kimhi,  S.,  Marciano,  H.,  Eshel,  Y.,  &  Adini,  B. (2020). Resilience and demographic char-acteristics  predicting  distress  during  the COVID-19  crisis.  Social  Science  &  Medi-cine, 265, 113389. https://doi.org/10.1016/j.socscimed.2020.113389
  17. Kohler, K., Scharte, B., & Roth, F. (2020). Meas-uring  individual  Disaster  Preparedness. DOI: 10.3929/ethz-b-00044128
  18. Kwok,  C.  (2020).  More  than  20,000   people evacuated   after   landslide   in   southwest China. https://www.scmp.com/video/china/3089572/more-20000-people-evacuated-after-landslide-southwest-china
  19. Larcom, M. J., & Isaacowitz, D. M. (2019). Rapid Emotion  Regulation  After  Mood  Induc-tion:  Age  and  Individual  Differences.  The Journals of Gerontology: Series B, 64B(6), 733–741. https://doi.org/10.1093/geronb/gbp077
  20. LSHale,  T.  S.,  &  Moberg,  C.  R.  (2005).  Improving supply chain disaster preparedness. Inter-national Journal of Physical Distribution & Logistics  Management,  35(3),  195–207. https://doi.org/10.1108/09600030510594576
  21. Maddi,   S.   (2020).   The   Story   of   Hardiness: Twenty   Years   of   Theorizing,   Research, and Practice. https://aec6905spring2013.files.word-press.com/2013/01/maddi-2002-the-story-of-hardiness-twenty-years-of-theo-rizing.pdf
  22. Maddi,  S.  (2018).  On  hardiness  and  another pathway   to   resilience.   Retrieved   from: https://escholarship.org/con-tent/qt09x6n03h/qt09x6n03h_no-Splash_98fa9cca9152529f7de5e045ab301f98.pdf?t=osodgk
  23. Mahmoudi    H,    Habibpour    Z,    Nir    MS,    & Areshtanab HN., (2019).Resilience and its predictors  among  the  parents  of  children with  cancer:  a  descriptive-correlational study.  Ind  J  Palliat  Care  2019;  25:  79-83. DOI: 10.4103/IJPC.IJPC_128_18
  24. Massazza,  A.,  Brewin,  C.  R.,  &  Joffe,  H.  (2021). Feelings, Thoughts, and Behaviors During Disaster.    Qualitative    Health    Research, 31(2), 323–337. https://doi.org/10.1177/104973232096879
  25. McDonal  G,  Jackson  D,  Wilkes  L,  &  Vickers  M., (2013).  Personal  resilience  in  nurses  and midwives: effects of  a work-based  educa-tional intervention. DOI: 10.5172/conu.2013.45.1.134
  26. Mendes I, DriessnackM,  & Sousa V. (2017). An overview  of  research  designs  relevant  to nursing: Part 1: Quantitative research de-signs. https://www.sci-elo.br/j/rlae/a/7zMf8XypC67vGPrXVrVFGdx
  27. Mohammadi  F,  Tehranineshat  B,  Tazangi  R, Sohrabpour M, Parviniannasab A, & Bijani M.,  (2020).  A  study  of  the  relationship among  burned  patients’  resilience  and self-efficacy  and  their  quality  of  life.  Pa-tient Pref and Adherence 2020; 14: 1361-1369. DOI: 10.2147/PPA.S262571
  28. Najafi, M., Ardalan, A., Akbarisari, A., Noorbala, A., & Jabbari, H. (2015). Demographics De-terminants  of  Disaster  Preparedness  Be-haviors    Amongst    Tehran    Inhabitants, Iran. doi: 10.1371/cur-rents.dis.976b0ab9c9d9941cbbae3775a6c5fbe6
  29. Patrisina,  R.,  Emetia,  F.,  Nikorn,  S.,  &  Suthum-manon,  S.  (2018).  Key  performance  indi-cators  of  disaster  preparedness:  a  case study  of  a  tsunami  disaster.  MATEC  Web of Conferences, 229, 01010. https://www.researchgate.net/publica-tion/328930859_Key_performance_indi-cators_of_disaster_prepared-ness_a_case_study_of_a_tsunami_disaster
  30. Petchko, K. (2018). Multiple Regression Analy-sis:  How  to  Write  Economics  and  Public Policy. https://www.sciencedi-rect.com/topics/economics-economet-rics-and-finance/multiple-regression-analysis
  31. Petley,  D.  (2019).  Cotabato,  Philippines:  large landslides  from  the  series  of  earthquakes in October 2019. Blogosphere. https://blogs.agu.org/land-slideblog/2019/11/04/cotabato-land-slides/
  32. Rañeses, M., K., Chang-Richards, A., Richards, J., &  Bubb,  J.  (2018).  Measuring  the  level  of Preparedness in Auckland. https://www.researchgate.net/publica-tion/323352880_Measur-ing_the_level_of_disaster_prepared-ness_in_Auckland
  33. Reuters.  (2022).  Philippine  President  Marcos inspects  landslide-hit  province,  death  toll at 110. https://www.reu-ters.com/world/asia-pacific/philippine-president-marcos-inspects-landslide-hit-province-death-toll-110-2022-11-01
  34. Sim, K., Lee, M., & Yee Wong, S. (2022). A review of Landslide acceptable risk and tolerable risk. https://geoenvironmental-disas-ters.springeropen.com/arti-cles/10.1186/s40677-022-00205-6
  35. Sunstar,  (2019).  Latest  Philippine  Community News,  Cebuano  Stories, Bisaya News,  and Information:   Disaster   Office   Warns   of Landslide. https://www.sun-star.com.ph/ampArticle/1809207
  36. Tetko, M., Restvej, J., & Zamiar, Z. (2021). Popu-lation Preparedness for Disasters and Ex-treme  Weather  Events  as  a  Predictor  of Building  a  Resilient  Society:  The  Slovak Republic, Int. J. Environ. Res. Public Health 2021,    18(5),    2311.    Retrieved    from: https://www.mdpi.com/1660-4601/18/5/2311
  37.  The  Inquirer  Staff,  (2020).  Leyte  village  hit  by Agaton    off-limits. Philippine    Daily    In-quirer. https://newsinfo.in-quirer.net/1585117/leyte-village-hit-hard-by-agaton-off-limits
  38. Thomas,  J.,  &  Segal,  D.  (2006)  Comprehensive Handbook   of   Personality   and   Psycho-pathology,    Personality    and    Everyday Functioning. (n.d.) Volume 1. https://www.researchgate.net/pro-file/Paul-Costa/publica-tion/233820773_Trait_and_factor_theo-ries/links/00b7d52db42cc7f35c000000/Trait-and-factor-theories.pdf
  39. United  Nations  General  Assembly  (2016).  Re-port of the Open-Ended Inter-government Expert  Working  Group  on  Indicators  and Terminology relating to Disaster Risk Re-duction.    doi:    https://www.prevention-web.net/files/50683_oiewgreporteng-lish.pdf
  40. Union  of  International  Associations.  (2020). The  Encyclopedia  of  World  Problems  & Human     Potential:     Natural     Disasters. ARTICLE-REFERENCES-VOL-5-NO.-8 ( AUGUST ).docx
  41. Winderl,  T.  (2023).  Disaster  Resilience  Meas-urement: Stocktaking of ongoing efforts in developing  systems  for  measuring  resili-ence. UNISDR. https://www.prevention-web.net/publication/disaster-resilience-measurements-stocktaking-ongoing-ef-forts-developing-systems
  42. Wingard,  J.,  &  Brandlin,  A.  (2013).  Philippines is prone to natural disasters. https://www.dw.com/en/philippines-a-country-prone-to-natural-disasters/a-17217404.
  43. Winter,  M.,  Shearer,  B.,  Palmer,  D.,  Peeling,  J., Halmer,  C.,  and  Sharpe,  J.  (2018).  Assess-ment  of  the  Economic  Impacts  of  Land-slide  and  Other  Climate-Driven  Events. https://www.researchgate.net/publica-tion/329831224_Assess-ment_of_the_Economic_Impacts_of_Land-slides_and_Other_Climate-Driven_Events