HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 5 no. 8 (2024)

Deflection Behavior of Reinforced Concrete Beam Frame System with 3/4 Spacing Effective Height of The Beam

David D.M. Huwae | Pieter L. Frans | Lydia R. Parera

Discipline: social sciences (non-specific)

 

Abstract:

This study aimed to analyze the deflection behavior of reinforced concrete beams with a spacing of 3/4 of the effective beam height. This research is a laboratory experimental study with a design of 6 (six) test objects consisting of 3 (three) normal beams (BN) as control variable beams and 3 (three) reinforcing beams of the frame system with a spacing of 0.75d (BTR75) as the independent variable. Data were analyzed using the strength design method. The results showed that the deflection behavior of reinforced concrete beams with a spacing of 3/4 of the effective beam height (BTR75) had better serviceability and increased the flexural capacity of Mu beams up to 4.60% and reduced the amount of deflection of the beam BN.



References:

  1. Ahmad,  S.,  Masri,  A.,  &  Abou  Saleh,  Z.  (2018). Analytical and experimental investigation on    the    flexural    behavior    of    partially encased    composite    beams. Alexandria Engineering   Journal, 57(3),   1693–1712. https://doi.org/10.1016/j.aej.2017.03.035
  2. Albegmprli, H. M., Gülşan, M. E., & Cevik, A. (2019). Comprehensive experimental investigation  on  mechanical  behavior  for types  of  reinforced  concrete  Haunched beam. Advances  in  concrete  construction, 7(1), 39. https://doi.org/https://doi.org/10.12989/acc.2019.7.1.039
  3. Annadurai,   A.,   &   Ravichandran,   A.   (2018). Seismic  Behavior  of  Beam–Column  Joint Using    Hybrid    Fiber    Reinforced    High-Strength    Concrete. Iranian    Journal    of Science  and  Technology,  Transactions  of Civil Engineering, 42(3), 275–286. https://doi.org/10.1007/s40996-018-0100-9
  4. Araba,  A.  M.,  &  Ashour,  A.  F.  (2018).  Flexural performance of hybrid GFRP-Steel reinforced   concrete   continuous   beams. Composites Part B: Engineering, 154, 321–336. https://doi.org/10.1016/j.compositesb.2018.08.077
  5. Balaji,    S.,    &    Thirugnanam,    G.    S.    (2018). Behaviour  of  reinforced  concrete  beams with  SIFCON  at  various  locations  in  the beam. KSCE  Journal  of  Civil  Engineering, 22(1), 161–166. https://doi.org/10.1007/s12205-017-0498-9
  6. Chen, P., Zhou, X., Zheng, W., Wang, Y., & Bao, B. (2020).  Influence  of  high  sustained  loads and  longitudinal  reinforcement  on  long-term  deformation  of  reinforced  concrete beams. Journal of Building Engineering, 30, 101241. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101241
  7. Ebead,  U.,  &  El-Sherif,  H.  (2019).  Near  surface embedded-FRCM for flexural strengthening    of    reinforced    concrete beams. Construction and building materials, 204, 166–176.
  8. El-Helou,   R.   G.,   &   Graybeal,   B.   A.   (2022). Flexural Behavior and Design of Ultrahigh-Performance  Concrete  Beams. Journal  of  Structural  Engineering, 148(4), 4022013. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003246
  9. Fan,  W.,  Liu,  B.,  Huang,  X.,  &  Sun,  Y.  (2019). Efficient  modeling  of  flexural  and  shear behaviors  in  reinforced  concrete  beams and   columns   subjected   to   low-velocity impact   loading. Engineering   Structures, 195, 22–50. https://doi.org/10.1016/j.engstruct.2019.05.082
  10. Frans,  P.  L.,  Parung,  H.,  Djamaluddin,  R.,  & Irmawaty,  R.  (2019).  The  Effect  Of  Space Bar  In  The  Truss  Reinforcing  System  To The    Flexural    Capacity    Of    Reinforced Concrete  Beams. International  Journal  of Civil Engineering and Technology (IJCIET), 10(04), 754–762.
  11. Frans,  P.  L.,  &  Tahya,  H.  (2020).  Behavior  Of Concrete   Beam   Deflection   Framework System. Proceeding     on     International Conference   of   Science   Management   Art Research  Technology, 1(1),  151–159.  RSF Press & RESEARCH SYNERGY FOUNDATION. https://doi.org/10.31098/ic-smart.v1i1.36
  12. Hama,  S.  M.,  Mahmoud,  A.  S.,  &  Yassen,  M.  M. (2019).  Flexural  behavior  of  reinforced concrete  beam  incorporating  waste  glass powder. Structures, 20, 510–518. https://doi.org/10.1016/j.istruc.2019.05.012
  13. Khan, M. I., Al-Osta, M. A., Ahmad, S., & Rahman, M.  K.  (2018).  Seismic  behavior  of  beam-column  joints  strengthened  with  ultra-high performance fiber reinforced concrete. Composite  Structures, 200,  103–119. https://doi.org/10.1016/j.compstruct.2018.05.080
  14. Krall, M., & Polak, M. A. (2019). Concrete beams with   different   arrangements   of   GFRP flexural and shear reinforcement. Engineering    Structures, 198,    109333. https://doi.org/10.1016/j.engstruct.2019.109333
  15. Lv,   X.,   Yu,   Z.,   &   Shan,   Z.   (2021).   Seismic behaviour    of    frame    structures    with assembly of prefabricated concrete beam. Journal    of    Building    Engineering, 40, 102765. https://doi.org/10.1016/j.jobe.2021.102765
  16. Meutia,  A.  A.,  Lumowa,  R.,  &  Sakakibara,  M. (2022).  Indonesian  Artisanal  and  Small-Scale Gold Mining—A Narrative Literature  Review. International  Journal of   Environmental   Research   and   Public Health, 19(7), 3955. https://doi.org/10.3390/ijerph19073955
  17. Mohammed,   A.   S.,   Al-Zuheriy,   A.   S.   J.,   & Abdulkareem, B. F. (2023). An Experimental   Study   to   Predict   a   New Formula  for  Calculating  the  Deflection  in Wide   Concrete   Beams   Reinforced   with Shear Steel Plates. International Journal of Engineering, 36(2), 360–371. https://doi.org/10.5829/IJE.2023.36.02B.15
  18. Nematzadeh,     M.,     &     Fallah-Valukolaee,     S. (2021).     Experimental     and     analytical investigation   on   structural   behavior   of two-layer fiber-reinforced concrete beams  reinforced  with  steel  and  GFRP rebars. Construction and Building Materials, 273, 121933. https://doi.org/10.1016/j.conbuildmat.2020.121933
  19. Obaidat,   A.   T.   (2022).   Flexural   behavior   of reinforced   concrete   beam   using   CFRP hybrid    system. European    Journal    of Environmental    and    Civil    Engineering, 26(13), 6165–6187. https://doi.org/10.1080/19648189.2021.1934552
  20. Oktaviani,   W.   N.,   Tambusay,   A.,   Komara,   I., Sutrisno,  W.,  Faimun,  F.,  &  Suprobo,  P. (2020). Flexural Behaviour of a Reinforced  Concrete  Beam  Blended  with Fly  ash  as  Supplementary  Material. IOP Conference Series: Earth and Environmental   Science, 506(1),   012042. https://doi.org/10.1088/1755-1315/506/1/012042
  21. Rahman, R., Dirar, S., Jemaa, Y., Theofanous, M., &    Elshafie,    M.    (2018).    Experimental behavior and design of exterior reinforced concrete beam-column joints strengthened with embedded bars. Journal   of   Composites   for   Construction, 22(6), 4018047.
  22. Rosanka,  S.,  Franco,  B.,  Clarisse,  L.,  Coheur,  P.-F.,  Pozzer,  A.,  Wahner,  A.,  &  Taraborrelli, D.     (2021).     The     impact     of     organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric   composition. Atmospheric Chemistry   and   Physics, 21(14),   11257–11288.   https://doi.org/10.5194/acp-21-11257-2021
  23. Seara-Paz,  S., González-Fonteboa, B., Martínez-Abella,    F.,    &    Eiras-López,    J.    (2018). Flexural performance of reinforced concrete    beams    made    with    recycled concrete   coarse   aggregate. Engineering Structures, 156, 32–45. https://doi.org/10.1016/j.engstruct.2017.11.015
  24. Shen,  D.,  Jiao,  Y.,  Li,  M.,  Liu,  C.,  &  Wang,  W. (2021).     Behavior of     a     60-year-old Reinforced Concrete Box Beam Strengthened with Basalt Fiber-reinforced   Polymers   Using   Steel   Plate Anchorage. Journal  of  Advanced  Concrete Technology, 19(11), 1100–1119. https://doi.org/10.3151/jact.19.1100
  25. Sijavandi,  K.,  Sharbatdar,  M.  K.,  &  Kheyroddin, A.   (2021).   Experimental   evaluation   of flexural   behavior   of   High-Performance Fiber  Reinforced  Concrete  Beams  using GFRP    and    High    Strength    Steel    Bars. Structures, 33, 4256–4268.
  26. Suparp,   S.,   &   Joyklad,   P.   (2021).   Flexural behavior  of  hollow  reinforced  concrete haunched     (RCH)     beams. Journal     of Engineering     Science     and     Technology, 16(4), 3267–3282.
  27. Tunc,  G.,  Dakhil,  A.,  &  Mertol,  H.  C.  (2021). Experimental  Analysis  of  the  Behavior  of Composite   Column-Reinforced   Concrete Beam  Joints. Arabian  Journal  for  Science and  Engineering, 46(11),  10785–10801. https://doi.org/10.1007/s13369-021-05545-3
  28. Yu,  J.,  Luo,  L.,  &  Fang,  Q.  (2020).  Structure behavior   of   reinforced   concrete   beam-slab  assemblies  subjected  to  perimeter middle column removal scenario. Engineering    Structures, 208,    110336. https://doi.org/10.1016/j.engstruct.2020.110336.
  29. Zhang, Y., Elsayed, M., Zhang, L. V., & Nehdi,  M. L. (2021). Flexural behavior of reinforced concrete  T-section  beams  strengthened by NSM FRP bars. Engineering Structures, 233, 111922. https://doi.org/10.1016/j.engstruct.2021.111922