HomeJournal of Interdisciplinary Perspectivesvol. 2 no. 11 (2024)

Comparative Analysis of Sucrose and Moringa (Moringa oleifera Lam.) Leaf Extracts as Natural Additives to Prolong the Vase Life of Rose (Rosa x hybrida) Cut Flowers

Marjune T. Telebrico

Discipline: Plant Sciences

 

Abstract:

Roses, one of the most iconic flowers in the world, symbolize love, beauty, and elegance. Their vibrant colors and soft petals make them popular for special occasions like weddings, anniversaries, and romantic gestures. People from different walks of life usually admire roses for their aesthetic appeal and pleasant fragrance. Both florists and consumers in the flower industry depend on keeping cut roses fresh. Placing roses in water-filled vases is a standard method to extend their lifespan. This study explored the effectiveness of natural additives in prolonging the life of cut roses. A completely randomized design (CRD) was used, and four treatments were used: distilled water (control), a sucrose solution, moringa leaf extracts, and a combination of sucrose and moringa. The roses were observed over eight days to assess various factors such as leaf drop, stem rotting, bent necks, petal drop, flower condition, and petal color. The results showed that the combined treatment of sucrose and moringa led to the highest number of leaf drops, with 15 leaves dropping by day five. Distilled water resulted in 12 dropped leaves, moringa extract caused four leaves to drop, and sucrose had the least impact, with only two leaves dropping. The combination treatment also caused the most significant stem rotting (32.75 mm) and the most bent necks (14 roses). In contrast, roses treated with sucrose or moringa separately had better outcomes, with the least bent necks and minimal leaf drops. The combined treatment again had the worst results for petal drops, with eight petals dropping, followed by distilled water with six petals. The overall flower condition was poorest with the combined treatment, scoring 1 (completely open/damaged), while roses treated with sucrose or moringa separately had better scores, indicating they remained fresher. Petal color was also most affected by the combined treatment, which resulted in a light brown color, whereas the separate treatments maintained a darker red hue. Hence, while sucrose and moringa are beneficial when used individually, their combination negatively impacts the longevity and appearance of cut roses.



References:

  1. Acutis, M., Tadiello, T., Perego, A., Di Guardo, A., Schillaci, C., & Valkama, E. (2022). EX-TRACT: An excel
  2. tool for the estimation of standard deviations from published articles. Environmental Modelling & Software, 147, 105236. https://doi.org/10.1016/j.envsoft.2021.105236
  3. Adewumi, O. O. (2021). Nutritional and functional properties of Bambara groundnut and Moringa oleifera
  4. leaf protein complex in a ready-to-use therapeutic food (RUTF) (Doctoral dissertation). Cape Peninsula University of Technology
  5. Ahmed, N., Zhang, B., Bozdar, B., Chachar, S., Rai, M., Li, J., & Tu, P. (2023). The power of magnesium:
  6. unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science, 14, 1285512. https://doi.org/10.3389/fpls.2023.1285512
  7. Aleksis, K. S. B. (2024). The global floriculture industry: logistics and transport aspects (a case study of the
  8. cut flower segment) (Master’s Thesis). Saint-Petersburg State University
  9. Aluko, O. O., Li, C., Wang, Q., & Liu, H. (2021). Sucrose utilization for improved crop yields: A review
  10. article. International Journal of Molecular Sciences, 22(9), 4704.  https://doi.org/10.3390/ijms22094704
  11. Álvarez-Barreto, J. F., Cevallos-Ureña, A., Zurita, J., Pérez, J., León, M., & Ramírez-Cárdenas, L. (2023).
  12. Edible coatings of aloe vera gel and carnauba wax microparticles to increase strawberry (Fragaria ananassa) shelf life. International Journal of Fruit Science, 23(1), 181-199. https://doi.org/10.1080/15538362.2023.2180129
  13. Arif, Y., Bajguz, A., & Hayat, S. (2023). Moringa oleifera extract as a natural plant biostimulant. Journal of
  14. Plant Growth Regulation, 42(3), 1291-1306. https://doi.org/10.1007/s00344-022-10630-4.
  15. Azarhoosh, J., Hashemabadi, D., Asadpour, L., & Kaviani, B. (2021). Extending Vase Life of Cut Strelitzia
  16. reginae Aiton Flowers by Cobalt Chloride, Cerium Nitrate, Silver Nanoparticles and Nanosil. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 89-99. https://doi.org/10.24326/asphc.2021.4.8
  17. Bhardwaj, R. L., Sharma, Y. K., & Vyas, L. (2021). Postharvest Handling of Horticultural Crops. Retrieved from
  18. https://doi.org/10.1201/9781003261582
  19. Bhattacharya, A. (2021). Mineral nutrition of plants under soil water deficit condition: A review. In A.
  20. Bhattacharya, Soil Water Deficit and Physiological Issues in Plants (pp. 287–391). Springer Singapore
  21. Bika, R. (2021). Integration of sanitation practices and fungicide applications for assuring better postharvest shelf
  22. life of cut flowers and greenery (Master's thesis). Tennessee State University
  23. Budniak, L., Slobodianiuk, L., Marchyshyn, S., & Ilashchuk, P. (2021). Determination of polysaccharides in
  24. Gentiana cruciata L. herb. Pharmacologyonline, 2, 1473-1479. http://pharmacologyonline.silae.it
  25. Chang, C. M., Lin, K. H., Huang, M. Y., Chen, C. I., Hsueh, M. L., Wang, C. W., & Yeh, K. W. (2021). Growth
  26. and flowering characteristics of oncidium gower ramsey varieties under various fertilizer management treatments in response to light intensities. Agronomy, 11(12), 2549.  https://doi.org/10.3390/agronomy11122549
  27. Chen, Y. H. (2021). Dehydration and microbial impacts on water uptake and postharvest quality of cut Lilium (Thesis).
  28. Cornell University
  29. Cornelis, S., & Hazak, O. (2022). Understanding the root xylem plasticity for designing resilient crops. Plant, Cell & Environment, 45(3), 664-676. https://doi.org/10.1111/pce.14245
  30. Da Costa, L. C., de Araujo, F. F., Ribeiro, W. S., de Sousa Santos, M. N., & Finger, F. L. (2021). Postharvest physiology of cut flowers. Ornamental Horticulture, 27(03), 374-385.  https://doi.org/10.1590/2447-536X.v27i3.2372
  31. Dhiman, M. R., Kumar, R., & Kumar, S. (2021). Postharvest Handling and Disease Management of Cut Flowers. In Postharvest Handling and Diseases of Horticultural Produce (pp. 415-430). CRC Press.
  32. Fanourakis, D., Papadakis, V. M., Psyllakis, E., Tzanakakis, V. A., & Nektarios, P. A. (2022). The role of water relations and oxidative stress in the vase life response to prolonged storage: A case study in chrysanthemum. Agriculture, 12(2), 185.  https://doi.org/10.3390/agriculture12020185
  33. Fanourakis, D., Papadopoulou, E., Valla, A., Tzanakakis, V. A., & Nektarios, P. A. (2021). Partitioning of transpiration to cut flower organs and its mediating role on vase life response to dry handling: A case study in chrysanthemum. Postharvest Biology and Technology, 181, 111636. https://doi.org/10.1016/j.postharvbio.2021.111636
  34. Farhat, F., Ashaq, N., Noman, A., Aqeel, M., Raja, S., Naheed, R., & Tariq, A. (2023). Exogenous application of moringa leaf extract confers salinity tolerance in sunflower by concerted regulation of antioxidants and secondary metabolites. Journal of Soil Science and Plant Nutrition, 23(3), 3806-3822. https://doi.org/10.1007/s42729-023-01301-8
  35. Faust, J. E., & Dole, J. M. (2021). Major cut flowers. Retrieved from https://www.cabidigitallibrary.org/doi/abs/10.1079/9781789247602.0002
  36. Gururani, M. A., Atteya, A. K., Elhakem, A., El-Sheshtawy, A. N. A., & El-Serafy, R. S. (2023). Essential oils
  37. prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels. Plos one, 18(3), e0281717. https://doi.org/10.1371/journal.pone.0281717
  38. Ha, S. T. T., Nguyen, T. K., & Lim, J. H. (2021). Effects of air-exposure time on water relations, longevity, and aquaporin-related gene expression of cut roses. Horticulture, environment, and biotechnology, 62, 63-75. https://doi.org/10.1007/s13580-020-00302-1
  39. Ha, S. T. T., & In, B. C. (2022). Combined nano silver, α-aminoisobutyric acid, and 1-methylcyclopropene treatment delays the senescence of cut roses with different ethylene sensitivities. Horticulturae, 8(6), 482. https://doi.org/10.3390/horticulturae8060482
  40. Hajam, Y. A., Lone, R., & Kumar, R. (2023). Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In Plant phenolics in abiotic stress management (pp. 125-147). Singapore: Springer Nature Singapore.
  41. Han, J., Li, T., Wang, X., Zhang, X., Bai, X., Shao, H., & Leng, P. (2022). AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science, 13, 885168. https://doi.org/10.3389/fpls.2022.885168
  42. Haq, A. U., Farooq, S., Lone, M. L., Parveen, S., Altaf, F., & Tahir, I. (2024). Flower Senescence Coordinated by Ethylene: An Update and Future Scope on Postharvest Biology in the “Buttercup” Family. Journal of Plant Growth Regulation, 43(2), 402-422. https://doi.org/10.1007/s00344-023-11122-9
  43. Hashemi, R. H., Nikbakht, A., & Aalipour, H. (2024). Synergistic effects of oxygen nanobubble, nano-silicon and seaweed extract on promoting quality and postharvest performance of two cut rose flowers. Scientia Horticulturae, 338, 113637. https://doi.org/10.1016/j.scienta.2024.113637
  44. Islam, M. A. U., Nupur, J. A., Hunter, C. T., Sohag, A. A. M., Sagar, A., Hossain, M. S., ... & Tahjib-UI-Arif, M. (2022). Crop improvement and abiotic stress tolerance promoted by moringa leaf extract. Phyton, 91(8). https://doi.org/10.32604/phyton.2022.021556
  45. Kaur, H., Manna, M., Thakur, T., Gautam, V., & Salvi, P. (2021). Imperative role of sugar signaling and transport during drought stress responses in plants. Physiologia plantarum, 171(4), 833-848.  https://doi.org/10.1111/ppl.13364
  46. Khan, S., Ibrar, D., Bashir, S., Rashid, N., Hasnain, Z., Nawaz, M., & Dvořáček, J. (2022). Application of moringa leaf extract as a seed priming agent enhances growth and physiological attributes of rice seedlings cultivated under water deficit regime. Plants, 11(3), 261. https://doi.org/10.3390/plants11030261
  47. Ketsa, S., & Warrington, I. J. (2023). The Dendrobium Orchid: Botany, horticulture, and utilization. Crop Science, 63(4), 1829-1888.  https://doi.org/10.1002/csc2.20952
  48. Kumar, R., Yadav, M. K., Shankar, B. A., Sharma, S., & Rani, R. (2022). Effect of different chemicals to enhance vase life of tuberose (Polianthes tuberosa L.) cut flowers. International Journal of Agricultural and Statistical Sciences, 18(1), 995-1002. https://connectjournals.com/03899.2022.18.995
  49. Lan, Y. C., Tam, V. W., Xing, W., Datt, R., & Chan, Z. (2022). Life cycle environmental impacts of cut flowers: A review. Journal of Cleaner Production, 369, 133415. https://doi.org/10.1016/j.jclepro.2022.133415
  50. Liu, Z., Luo, Y., & Liao, W. (2024). Postharvest physiology of fresh-cut flowers. In Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops (pp. 23-42). Academic Press
  51. Lone, M. L., ul Haq, A., Farooq, S., Altaf, F., Parveen, S., & Tahir, I. (2022). Jasmonates and salicylic acid accentuate longevity in ray florets of Calendula officinalis L. by attenuating postharvest oxidative stress. Plant Physiology Reports, 27(2), 282-294. https://doi.org/10.1007/s40502-022-00656-x
  52. Malakar, M., Paiva, P. D. D. O., Beruto, M., & Cunha Neto, A. R. D. (2023). Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Frontiers in Plant Science, 14, 1221346. https://doi.org/10.3389/fpls.2023.1221346
  53. Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225.  https://doi.org/10.3390/antiox11020225
  54. Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., & Fawole, O. A. (2022). Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants, 11(17), 2214. https://doi.org/10.3390/plants11172214
  55. Mehmood, A., Naveed, K., Ayub, Q., Alamri, S., Siddiqui, M. H., Wu, C., ... & Fahad, S. (2021). Exploring the potential of moringa leaf extract as bio stimulant for improving yield and quality of black cumin oil. Scientific reports, 11(1), 24217. https://doi.org/10.1038/s41598-021-03617-w
  56. Mileva, M., Ilieva, Y., Jovtchev, G., Gateva, S., Zaharieva, M. M., Georgieva, A., ... & Najdenski, H. (2021). Rose flowers—A delicate perfume or a natural healer?. Biomolecules, 11(1), 127. https://doi.org/10.3390/biom11010127
  57. Mittal, I., Jhanji, S., & Dhatt, K. K. (2021). Efficacy of sodium nitroprusside, a nitric oxide donor, on vase life and postharvest attributes of gladiolus spikes. Acta Physiologiae Plantarum, 43(7), 108. https://doi.org/10.1007/s11738-021-03275-5
  58. Mohammed, M., Jawad, A. J. A. M., Mohammed, A. M., Oleiwi, J. K., Adam, T., Osman, A. F., & Jaafar, M. (2023). Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 124, 108083. https://doi.org/10.1016/j.polymertesting.2023.108083
  59. Muraleedhran, A., Kousika, S., Subasri, S., Kumar, C. P. S., Joshi, J. L., & Karthikeyan, P. K. (2022). Post-Harvest Handling of Cut Flowers and Its Application. Practices Research, 155, 57. https://doi.org/10.22271/ed.book.1521
  60. Nasibi, F., Farahmand, H., Noori, H., & Shahabi, Z. M. (2024). Cold atmospheric pressure plasma as eco-friendly technology prolonged the vase life and improved the quality of cut rose flowers. Scientia Horticulturae, 327, 112829. https://doi.org/10.1016/j.scienta.2023.112829
  61. Naziri Moghaddam, N., Hashemabadi, H., Kaviani, B., Safari Motlagh, M. R., & Khorrami Raad, M. (2021). Effect of sodium nitroprusside on the vase life of cut rose, lisianthus, and sunflower. Journal of Ornamental Plants, 11(3), 185-195. https://sanad.iau.ir/journal/jornamental/Article/685408?jid=685408
  62. Ndlovu, S. S., Chuturgoon, A. A., & Ghazi, T. (2023). Moringa oleifera Lam Leaf extract stimulates NRF2 and attenuates ARV-induced toxicity in human liver cells (HepG2). Plants, 12(7), 1541. https://doi.org/10.3390/plants12071541
  63. Ngwenya, M. S. (2021). Postharvest insect pest disinfestation in export Proteaceae cut flowers-the potential of new disinfestation strategies (Doctoral dissertation). Stellenbosch: Stellenbosch University
  64. Phan, J. (2021). Metabolic indicators of microbial colonization and disease progression in cystic fibrosis (Thesis). University of California, Irvine
  65. Rahim, A., Venkata Nadh, R., Saeed, A. M. M. J., Majety, S. S., Akhil, S., Kumar, N., ... & Ramachandran, D. (2024). Enhanced Catalytic, Antioxidant, and Electrochemical Properties of Green‐Synthesized Graphene‐Silver Nanocomposite Utilizing Moringa Oleifera Leaf Extract. ChemistrySelect, 9(28), e202401848. https://doi.org/10.1002/slct.202401848
  66. Rawat, M., Kaur, H., Das, S., Kaur, T., Akram, N., Faisal, Z., & Shah, Y. A. (2024). Medicinal utilization and nutritional properties of drumstick (Moringa oleifera)—A comprehensive review. Food Science & Nutrition, 12(7), 4546. https://doi.org/10.1002/fsn3.4139
  67. Rezai, S., Sabzalian, M. R., Nikbakht, A., & Zarei, H. (2024). Red LED light improved the vase life of cut rose flowers during cold storage. Postharvest Biology and Technology, 210, 112752. https://doi.org/10.1016/j.postharvbio.2023.112752
  68. Rodrigues, R. C., Pereira, H. S., Senra, R. L., Ribon, A. D. O. B., & de Oliveira Mendes, T. A. (2023). Understanding the emerging potential of synthetic biology for food science: achievements, applications and safety considerations. Food Chemistry Advances, 100476. https://doi.org/10.1016/j.focha.2023.100476
  69. Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277.  https://doi.org/10.3390/antiox10020277
  70. Seyed Hajizadeh, H., Dadashzadeh, R., Azizi, S., Mahdavinia, G. R., & Kaya, O. (2023). Effect of Chitosan nanoparticles on quality indices, metabolites, and vase life of Rosa hybrida cv. Black magic. Chemical and Biological Technologies in Agriculture, 10(1), 12. https://doi.org/10.1186/s40538-023-00387-7
  71. Shah, K. H., & Oza, M. J. (2022). Comprehensive review of bioactive and molecular aspects of Moringa
  72. Oleifera lam. Food Reviews International, 38(7), 1427-1460. https://doi.org/10.1080/87559129.2020.1813755
  73. Shantamma, S., Vasikaran, E. M., Waghmare, R., Nimbkar, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Emerging techniques for the processing and preservation of edible flowers. Future Foods, 4, 100094. https://doi.org/10.1016/j.fufo.2021.100094
  74. Sharma, B., Pandher, M. K., Alcaraz Echeveste, A. Q., Romo, R. K., & Bravo, M. (2024). Delphinium as a model for development and evolution of complex zygomorphic flowers. Frontiers in Plant Science, 15, 1453951. https://doi.org/10.3389/fpls.2024.1453951
  75. Shinde, S. P., Chaudhari, S. R., & Matche, R. S. (2023). A way forward for a sustainable active packaging solution for prolonging the freshness and shelf life of Rosa hybrida L. cut flowers. Postharvest Biology and Technology, 204, 112475. https://doi.org/10.1016/j.postharvbio.2023.112475
  76. Silvestri, L. (2022). TERRAFORMA-Material investigation on the possibilities to combine natural growth of mycelium and unfired clay for novel sustainable product design applications (Master’s Thesis). Politecnico
  77. Singh, A. K. (2023). Horticultural Practices and Post-Harvest Technology. Academic Guru Publishing House.
  78. Singh, K., Sharma, R., & Sahare, H. (2022). Implications of synthetic chemicals and natural plant extracts in improving vase life of flowers. Scientia Horticulturae, 302, 111133. https://doi.org/10.1016/j.scienta.2022.111133
  79. Si, Y., Wen, Y., Ye, H., Jia, T., Hao, Z., Su, S., & Wang, X. (2023). The Sink–Source Relationship Regulated Camellia oleifera Flower Bud Differentiation by Influencing Endogenous Hormones and Photosynthetic Characteristics. Forests, 14(10), 1965. https://doi.org/10.3390/f14101965
  80. Soares, T. F. S. N., da Silva, A. V. C., & Muniz, E. N. (2021). Moringa leaf extract: A cost-effective and sustainable product to improve plant growth. South African Journal of Botany, 141, 171-176. https://doi.org/10.1016/j.sajb.2021.04.007
  81. Soliman, D. M., & El-Sayed, I. M. (2023). Study postharvest characteristics, chemical composition and
  82. antimicrobial activity of Dianthus caryophyllus L., cut flowers using some essential oils. Ornamental Horticulture, 29(1), 37-47.  https://doi.org/10.1590/2447-536X.v29i1.2540  
  83. Sukpitak, C., Seraypheap, K., Muñoz, P., & Munné-Bosch, S. (2024). Influence of water deficit on the longevity of ethylene-sensitive and ethylene-insensitive flowers. Environmental and Experimental Botany, 105647. https://doi.org/10.1016/j.envexpbot.2024.105647
  84. Sun, X., Qin, M., Yu, Q., Huang, Z., Xiao, Y., Li, Y., & Gao, J. (2021). Molecular understanding of postharvest flower opening and senescence. Molecular Horticulture, 1(1), 7. https://doi.org/10.1186/s43897-021-00015-8.
  85. Tasmim, M. T. (2023). The vase life of two rose cultivars and the effects of different floral preservatives. Journal of Agriculture, Food and Environment, 4(3), 27-32. https://doi.org/10.47440/JAFE.2023.4305
  86. Terry, M. I., Ruiz-Hernández, V., Águila, D. J., Weiss, J., & Egea-Cortines, M. (2021). The effect of post-harvest conditions in Narcissus sp. cut flowers scent profile. Frontiers in plant science, 11, 540821. https://doi.org/10.3389/fpls.2020.540821
  87. Thörning, R., Ahlklo, Å. K., & Spendrup, S. (2022). The Slow Flower Movement – exploring alternative sustainable cut-flower production in a Swedish context. Heliyon, 8(10), e11086. https://doi.org/10.1016/j.heliyon.2022.e11086
  88. Toscano, S., Ferrante, A., Branca, F., & Romano, D. (2021). Enhancing the quality of two species of baby leaves sprayed with Moringa leaf extract as biostimulant. Agronomy, 11(7), 1399.  https://doi.org/10.3390/agronomy11071399
  89. Verdonk, J. C., van Ieperen, W., Carvalho, D. R., van Geest, G., & Schouten, R. E. (2023). Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, 14, 1281456. https://doi.org/10.3389/fpls.2023.1281456
  90. Verma, J., & Singh, P. (2021). Post-harvest handling and senescence in flower crops: An overview. Agricultural Reviews, 42(2), 145-155. https://doi.org/10.18805/ag.R-1992
  91. Villagran, E., Rocha, G. A. O., Mojica, L., Florez-Velazquez, J., Aguilar, C. E., Gomez, L., & Numa, S. (2024). Scientific analysis of cut flowers: a review of the main technical issues developed. Ornamental Horticulture, 30, e242699.  https://doi.org/10.1590/2447-536X.v30.e242699  
  92. Yang, M., Tao, L., Kang, X. R., Li, L. F., Zhao, C. C., Wang, Z. L., ... & Tian, Y. (2022). Recent developments in Moringa oleifera Lam. polysaccharides: A review of the relationship between extraction methods, structural characteristics and functional activities. Food Chemistry: X, 14, 100322. https://doi.org/10.1016/j.fochx.2022.100322
  93. Yasemin, S., & Beruto, M. (2024). A Review on Flower Bulb Micropropagation: Challenges and Opportunities. Horticulturae, 10(3), 284. https://doi.org/10.3390/horticulturae10030284
  94. Yuniati, N., Kusumiyati, K., Mubarok, S., & Nurhadi, B. (2022). The role of moringa leaf extract as a plant biostimulant in improving the quality of agricultural products. Plants, 11(17), 2186. https://doi.org/10.3390/plants11172186
  95. Zeng, F., Xu, S., Geng, X., Hu, C., & Zheng, F. (2023). Sucrose+ 8-HQC improves the postharvest quality of lily and rose cut flowers by regulating ROS-scavenging systems and ethylene release. Scientia Horticulturae, 308, 111550. https://doi.org/10.1016/j.scienta.2022.111550