Comparative Analysis of Sucrose and Moringa (Moringa oleifera Lam.) Leaf Extracts as Natural Additives to Prolong the Vase Life of Rose (Rosa x hybrida) Cut Flowers
Marjune T. Telebrico
Discipline: Plant Sciences
Abstract:
Roses, one of the most iconic flowers in the world, symbolize love, beauty, and elegance. Their
vibrant colors and soft petals make them popular for special occasions like weddings, anniversaries, and
romantic gestures. People from different walks of life usually admire roses for their aesthetic appeal and
pleasant fragrance. Both florists and consumers in the flower industry depend on keeping cut roses fresh.
Placing roses in water-filled vases is a standard method to extend their lifespan. This study explored the
effectiveness of natural additives in prolonging the life of cut roses. A completely randomized design (CRD)
was used, and four treatments were used: distilled water (control), a sucrose solution, moringa leaf extracts,
and a combination of sucrose and moringa. The roses were observed over eight days to assess various factors
such as leaf drop, stem rotting, bent necks, petal drop, flower condition, and petal color. The results showed
that the combined treatment of sucrose and moringa led to the highest number of leaf drops, with 15 leaves
dropping by day five. Distilled water resulted in 12 dropped leaves, moringa extract caused four leaves to
drop, and sucrose had the least impact, with only two leaves dropping. The combination treatment also
caused the most significant stem rotting (32.75 mm) and the most bent necks (14 roses). In contrast, roses
treated with sucrose or moringa separately had better outcomes, with the least bent necks and minimal leaf
drops. The combined treatment again had the worst results for petal drops, with eight petals dropping,
followed by distilled water with six petals. The overall flower condition was poorest with the combined
treatment, scoring 1 (completely open/damaged), while roses treated with sucrose or moringa separately
had better scores, indicating they remained fresher. Petal color was also most affected by the combined
treatment, which resulted in a light brown color, whereas the separate treatments maintained a darker red
hue. Hence, while sucrose and moringa are beneficial when used individually, their combination negatively
impacts the longevity and appearance of cut roses.
References:
- Acutis, M., Tadiello, T., Perego, A., Di Guardo, A., Schillaci, C., & Valkama, E. (2022). EX-TRACT: An excel
- tool for the estimation of standard deviations from published articles. Environmental Modelling & Software, 147, 105236. https://doi.org/10.1016/j.envsoft.2021.105236
- Adewumi, O. O. (2021). Nutritional and functional properties of Bambara groundnut and Moringa oleifera
- leaf protein complex in a ready-to-use therapeutic food (RUTF) (Doctoral dissertation). Cape Peninsula University of Technology
- Ahmed, N., Zhang, B., Bozdar, B., Chachar, S., Rai, M., Li, J., & Tu, P. (2023). The power of magnesium:
- unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science, 14, 1285512. https://doi.org/10.3389/fpls.2023.1285512
- Aleksis, K. S. B. (2024). The global floriculture industry: logistics and transport aspects (a case study of the
- cut flower segment) (Master’s Thesis). Saint-Petersburg State University
- Aluko, O. O., Li, C., Wang, Q., & Liu, H. (2021). Sucrose utilization for improved crop yields: A review
- article. International Journal of Molecular Sciences, 22(9), 4704. https://doi.org/10.3390/ijms22094704
- Álvarez-Barreto, J. F., Cevallos-Ureña, A., Zurita, J., Pérez, J., León, M., & Ramírez-Cárdenas, L. (2023).
- Edible coatings of aloe vera gel and carnauba wax microparticles to increase strawberry (Fragaria ananassa) shelf life. International Journal of Fruit Science, 23(1), 181-199. https://doi.org/10.1080/15538362.2023.2180129
- Arif, Y., Bajguz, A., & Hayat, S. (2023). Moringa oleifera extract as a natural plant biostimulant. Journal of
- Plant Growth Regulation, 42(3), 1291-1306. https://doi.org/10.1007/s00344-022-10630-4.
- Azarhoosh, J., Hashemabadi, D., Asadpour, L., & Kaviani, B. (2021). Extending Vase Life of Cut Strelitzia
- reginae Aiton Flowers by Cobalt Chloride, Cerium Nitrate, Silver Nanoparticles and Nanosil. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 89-99. https://doi.org/10.24326/asphc.2021.4.8
- Bhardwaj, R. L., Sharma, Y. K., & Vyas, L. (2021). Postharvest Handling of Horticultural Crops. Retrieved from
- https://doi.org/10.1201/9781003261582
- Bhattacharya, A. (2021). Mineral nutrition of plants under soil water deficit condition: A review. In A.
- Bhattacharya, Soil Water Deficit and Physiological Issues in Plants (pp. 287–391). Springer Singapore
- Bika, R. (2021). Integration of sanitation practices and fungicide applications for assuring better postharvest shelf
- life of cut flowers and greenery (Master's thesis). Tennessee State University
- Budniak, L., Slobodianiuk, L., Marchyshyn, S., & Ilashchuk, P. (2021). Determination of polysaccharides in
- Gentiana cruciata L. herb. Pharmacologyonline, 2, 1473-1479. http://pharmacologyonline.silae.it
- Chang, C. M., Lin, K. H., Huang, M. Y., Chen, C. I., Hsueh, M. L., Wang, C. W., & Yeh, K. W. (2021). Growth
- and flowering characteristics of oncidium gower ramsey varieties under various fertilizer management treatments in response to light intensities. Agronomy, 11(12), 2549. https://doi.org/10.3390/agronomy11122549
- Chen, Y. H. (2021). Dehydration and microbial impacts on water uptake and postharvest quality of cut Lilium (Thesis).
- Cornell University
- Cornelis, S., & Hazak, O. (2022). Understanding the root xylem plasticity for designing resilient crops. Plant, Cell & Environment, 45(3), 664-676. https://doi.org/10.1111/pce.14245
- Da Costa, L. C., de Araujo, F. F., Ribeiro, W. S., de Sousa Santos, M. N., & Finger, F. L. (2021). Postharvest physiology of cut flowers. Ornamental Horticulture, 27(03), 374-385. https://doi.org/10.1590/2447-536X.v27i3.2372
- Dhiman, M. R., Kumar, R., & Kumar, S. (2021). Postharvest Handling and Disease Management of Cut Flowers. In Postharvest Handling and Diseases of Horticultural Produce (pp. 415-430). CRC Press.
- Fanourakis, D., Papadakis, V. M., Psyllakis, E., Tzanakakis, V. A., & Nektarios, P. A. (2022). The role of water relations and oxidative stress in the vase life response to prolonged storage: A case study in chrysanthemum. Agriculture, 12(2), 185. https://doi.org/10.3390/agriculture12020185
- Fanourakis, D., Papadopoulou, E., Valla, A., Tzanakakis, V. A., & Nektarios, P. A. (2021). Partitioning of transpiration to cut flower organs and its mediating role on vase life response to dry handling: A case study in chrysanthemum. Postharvest Biology and Technology, 181, 111636. https://doi.org/10.1016/j.postharvbio.2021.111636
- Farhat, F., Ashaq, N., Noman, A., Aqeel, M., Raja, S., Naheed, R., & Tariq, A. (2023). Exogenous application of moringa leaf extract confers salinity tolerance in sunflower by concerted regulation of antioxidants and secondary metabolites. Journal of Soil Science and Plant Nutrition, 23(3), 3806-3822. https://doi.org/10.1007/s42729-023-01301-8
- Faust, J. E., & Dole, J. M. (2021). Major cut flowers. Retrieved from https://www.cabidigitallibrary.org/doi/abs/10.1079/9781789247602.0002
- Gururani, M. A., Atteya, A. K., Elhakem, A., El-Sheshtawy, A. N. A., & El-Serafy, R. S. (2023). Essential oils
- prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels. Plos one, 18(3), e0281717. https://doi.org/10.1371/journal.pone.0281717
- Ha, S. T. T., Nguyen, T. K., & Lim, J. H. (2021). Effects of air-exposure time on water relations, longevity, and aquaporin-related gene expression of cut roses. Horticulture, environment, and biotechnology, 62, 63-75. https://doi.org/10.1007/s13580-020-00302-1
- Ha, S. T. T., & In, B. C. (2022). Combined nano silver, α-aminoisobutyric acid, and 1-methylcyclopropene treatment delays the senescence of cut roses with different ethylene sensitivities. Horticulturae, 8(6), 482. https://doi.org/10.3390/horticulturae8060482
- Hajam, Y. A., Lone, R., & Kumar, R. (2023). Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In Plant phenolics in abiotic stress management (pp. 125-147). Singapore: Springer Nature Singapore.
- Han, J., Li, T., Wang, X., Zhang, X., Bai, X., Shao, H., & Leng, P. (2022). AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science, 13, 885168. https://doi.org/10.3389/fpls.2022.885168
- Haq, A. U., Farooq, S., Lone, M. L., Parveen, S., Altaf, F., & Tahir, I. (2024). Flower Senescence Coordinated by Ethylene: An Update and Future Scope on Postharvest Biology in the “Buttercup” Family. Journal of Plant Growth Regulation, 43(2), 402-422. https://doi.org/10.1007/s00344-023-11122-9
- Hashemi, R. H., Nikbakht, A., & Aalipour, H. (2024). Synergistic effects of oxygen nanobubble, nano-silicon and seaweed extract on promoting quality and postharvest performance of two cut rose flowers. Scientia Horticulturae, 338, 113637. https://doi.org/10.1016/j.scienta.2024.113637
- Islam, M. A. U., Nupur, J. A., Hunter, C. T., Sohag, A. A. M., Sagar, A., Hossain, M. S., ... & Tahjib-UI-Arif, M. (2022). Crop improvement and abiotic stress tolerance promoted by moringa leaf extract. Phyton, 91(8). https://doi.org/10.32604/phyton.2022.021556
- Kaur, H., Manna, M., Thakur, T., Gautam, V., & Salvi, P. (2021). Imperative role of sugar signaling and transport during drought stress responses in plants. Physiologia plantarum, 171(4), 833-848. https://doi.org/10.1111/ppl.13364
- Khan, S., Ibrar, D., Bashir, S., Rashid, N., Hasnain, Z., Nawaz, M., & Dvořáček, J. (2022). Application of moringa leaf extract as a seed priming agent enhances growth and physiological attributes of rice seedlings cultivated under water deficit regime. Plants, 11(3), 261. https://doi.org/10.3390/plants11030261
- Ketsa, S., & Warrington, I. J. (2023). The Dendrobium Orchid: Botany, horticulture, and utilization. Crop Science, 63(4), 1829-1888. https://doi.org/10.1002/csc2.20952
- Kumar, R., Yadav, M. K., Shankar, B. A., Sharma, S., & Rani, R. (2022). Effect of different chemicals to enhance vase life of tuberose (Polianthes tuberosa L.) cut flowers. International Journal of Agricultural and Statistical Sciences, 18(1), 995-1002. https://connectjournals.com/03899.2022.18.995
- Lan, Y. C., Tam, V. W., Xing, W., Datt, R., & Chan, Z. (2022). Life cycle environmental impacts of cut flowers: A review. Journal of Cleaner Production, 369, 133415. https://doi.org/10.1016/j.jclepro.2022.133415
- Liu, Z., Luo, Y., & Liao, W. (2024). Postharvest physiology of fresh-cut flowers. In Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops (pp. 23-42). Academic Press
- Lone, M. L., ul Haq, A., Farooq, S., Altaf, F., Parveen, S., & Tahir, I. (2022). Jasmonates and salicylic acid accentuate longevity in ray florets of Calendula officinalis L. by attenuating postharvest oxidative stress. Plant Physiology Reports, 27(2), 282-294. https://doi.org/10.1007/s40502-022-00656-x
- Malakar, M., Paiva, P. D. D. O., Beruto, M., & Cunha Neto, A. R. D. (2023). Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Frontiers in Plant Science, 14, 1221346. https://doi.org/10.3389/fpls.2023.1221346
- Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225. https://doi.org/10.3390/antiox11020225
- Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., & Fawole, O. A. (2022). Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants, 11(17), 2214. https://doi.org/10.3390/plants11172214
- Mehmood, A., Naveed, K., Ayub, Q., Alamri, S., Siddiqui, M. H., Wu, C., ... & Fahad, S. (2021). Exploring the potential of moringa leaf extract as bio stimulant for improving yield and quality of black cumin oil. Scientific reports, 11(1), 24217. https://doi.org/10.1038/s41598-021-03617-w
- Mileva, M., Ilieva, Y., Jovtchev, G., Gateva, S., Zaharieva, M. M., Georgieva, A., ... & Najdenski, H. (2021). Rose flowers—A delicate perfume or a natural healer?. Biomolecules, 11(1), 127. https://doi.org/10.3390/biom11010127
- Mittal, I., Jhanji, S., & Dhatt, K. K. (2021). Efficacy of sodium nitroprusside, a nitric oxide donor, on vase life and postharvest attributes of gladiolus spikes. Acta Physiologiae Plantarum, 43(7), 108. https://doi.org/10.1007/s11738-021-03275-5
- Mohammed, M., Jawad, A. J. A. M., Mohammed, A. M., Oleiwi, J. K., Adam, T., Osman, A. F., & Jaafar, M. (2023). Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 124, 108083. https://doi.org/10.1016/j.polymertesting.2023.108083
- Muraleedhran, A., Kousika, S., Subasri, S., Kumar, C. P. S., Joshi, J. L., & Karthikeyan, P. K. (2022). Post-Harvest Handling of Cut Flowers and Its Application. Practices Research, 155, 57. https://doi.org/10.22271/ed.book.1521
- Nasibi, F., Farahmand, H., Noori, H., & Shahabi, Z. M. (2024). Cold atmospheric pressure plasma as eco-friendly technology prolonged the vase life and improved the quality of cut rose flowers. Scientia Horticulturae, 327, 112829. https://doi.org/10.1016/j.scienta.2023.112829
- Naziri Moghaddam, N., Hashemabadi, H., Kaviani, B., Safari Motlagh, M. R., & Khorrami Raad, M. (2021). Effect of sodium nitroprusside on the vase life of cut rose, lisianthus, and sunflower. Journal of Ornamental Plants, 11(3), 185-195. https://sanad.iau.ir/journal/jornamental/Article/685408?jid=685408
- Ndlovu, S. S., Chuturgoon, A. A., & Ghazi, T. (2023). Moringa oleifera Lam Leaf extract stimulates NRF2 and attenuates ARV-induced toxicity in human liver cells (HepG2). Plants, 12(7), 1541. https://doi.org/10.3390/plants12071541
- Ngwenya, M. S. (2021). Postharvest insect pest disinfestation in export Proteaceae cut flowers-the potential of new disinfestation strategies (Doctoral dissertation). Stellenbosch: Stellenbosch University
- Phan, J. (2021). Metabolic indicators of microbial colonization and disease progression in cystic fibrosis (Thesis). University of California, Irvine
- Rahim, A., Venkata Nadh, R., Saeed, A. M. M. J., Majety, S. S., Akhil, S., Kumar, N., ... & Ramachandran, D. (2024). Enhanced Catalytic, Antioxidant, and Electrochemical Properties of Green‐Synthesized Graphene‐Silver Nanocomposite Utilizing Moringa Oleifera Leaf Extract. ChemistrySelect, 9(28), e202401848. https://doi.org/10.1002/slct.202401848
- Rawat, M., Kaur, H., Das, S., Kaur, T., Akram, N., Faisal, Z., & Shah, Y. A. (2024). Medicinal utilization and nutritional properties of drumstick (Moringa oleifera)—A comprehensive review. Food Science & Nutrition, 12(7), 4546. https://doi.org/10.1002/fsn3.4139
- Rezai, S., Sabzalian, M. R., Nikbakht, A., & Zarei, H. (2024). Red LED light improved the vase life of cut rose flowers during cold storage. Postharvest Biology and Technology, 210, 112752. https://doi.org/10.1016/j.postharvbio.2023.112752
- Rodrigues, R. C., Pereira, H. S., Senra, R. L., Ribon, A. D. O. B., & de Oliveira Mendes, T. A. (2023). Understanding the emerging potential of synthetic biology for food science: achievements, applications and safety considerations. Food Chemistry Advances, 100476. https://doi.org/10.1016/j.focha.2023.100476
- Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277
- Seyed Hajizadeh, H., Dadashzadeh, R., Azizi, S., Mahdavinia, G. R., & Kaya, O. (2023). Effect of Chitosan nanoparticles on quality indices, metabolites, and vase life of Rosa hybrida cv. Black magic. Chemical and Biological Technologies in Agriculture, 10(1), 12. https://doi.org/10.1186/s40538-023-00387-7
- Shah, K. H., & Oza, M. J. (2022). Comprehensive review of bioactive and molecular aspects of Moringa
- Oleifera lam. Food Reviews International, 38(7), 1427-1460. https://doi.org/10.1080/87559129.2020.1813755
- Shantamma, S., Vasikaran, E. M., Waghmare, R., Nimbkar, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Emerging techniques for the processing and preservation of edible flowers. Future Foods, 4, 100094. https://doi.org/10.1016/j.fufo.2021.100094
- Sharma, B., Pandher, M. K., Alcaraz Echeveste, A. Q., Romo, R. K., & Bravo, M. (2024). Delphinium as a model for development and evolution of complex zygomorphic flowers. Frontiers in Plant Science, 15, 1453951. https://doi.org/10.3389/fpls.2024.1453951
- Shinde, S. P., Chaudhari, S. R., & Matche, R. S. (2023). A way forward for a sustainable active packaging solution for prolonging the freshness and shelf life of Rosa hybrida L. cut flowers. Postharvest Biology and Technology, 204, 112475. https://doi.org/10.1016/j.postharvbio.2023.112475
- Silvestri, L. (2022). TERRAFORMA-Material investigation on the possibilities to combine natural growth of mycelium and unfired clay for novel sustainable product design applications (Master’s Thesis). Politecnico
- Singh, A. K. (2023). Horticultural Practices and Post-Harvest Technology. Academic Guru Publishing House.
- Singh, K., Sharma, R., & Sahare, H. (2022). Implications of synthetic chemicals and natural plant extracts in improving vase life of flowers. Scientia Horticulturae, 302, 111133. https://doi.org/10.1016/j.scienta.2022.111133
- Si, Y., Wen, Y., Ye, H., Jia, T., Hao, Z., Su, S., & Wang, X. (2023). The Sink–Source Relationship Regulated Camellia oleifera Flower Bud Differentiation by Influencing Endogenous Hormones and Photosynthetic Characteristics. Forests, 14(10), 1965. https://doi.org/10.3390/f14101965
- Soares, T. F. S. N., da Silva, A. V. C., & Muniz, E. N. (2021). Moringa leaf extract: A cost-effective and sustainable product to improve plant growth. South African Journal of Botany, 141, 171-176. https://doi.org/10.1016/j.sajb.2021.04.007
- Soliman, D. M., & El-Sayed, I. M. (2023). Study postharvest characteristics, chemical composition and
- antimicrobial activity of Dianthus caryophyllus L., cut flowers using some essential oils. Ornamental Horticulture, 29(1), 37-47. https://doi.org/10.1590/2447-536X.v29i1.2540
- Sukpitak, C., Seraypheap, K., Muñoz, P., & Munné-Bosch, S. (2024). Influence of water deficit on the longevity of ethylene-sensitive and ethylene-insensitive flowers. Environmental and Experimental Botany, 105647. https://doi.org/10.1016/j.envexpbot.2024.105647
- Sun, X., Qin, M., Yu, Q., Huang, Z., Xiao, Y., Li, Y., & Gao, J. (2021). Molecular understanding of postharvest flower opening and senescence. Molecular Horticulture, 1(1), 7. https://doi.org/10.1186/s43897-021-00015-8.
- Tasmim, M. T. (2023). The vase life of two rose cultivars and the effects of different floral preservatives. Journal of Agriculture, Food and Environment, 4(3), 27-32. https://doi.org/10.47440/JAFE.2023.4305
- Terry, M. I., Ruiz-Hernández, V., Águila, D. J., Weiss, J., & Egea-Cortines, M. (2021). The effect of post-harvest conditions in Narcissus sp. cut flowers scent profile. Frontiers in plant science, 11, 540821. https://doi.org/10.3389/fpls.2020.540821
- Thörning, R., Ahlklo, Å. K., & Spendrup, S. (2022). The Slow Flower Movement – exploring alternative sustainable cut-flower production in a Swedish context. Heliyon, 8(10), e11086. https://doi.org/10.1016/j.heliyon.2022.e11086
- Toscano, S., Ferrante, A., Branca, F., & Romano, D. (2021). Enhancing the quality of two species of baby leaves sprayed with Moringa leaf extract as biostimulant. Agronomy, 11(7), 1399. https://doi.org/10.3390/agronomy11071399
- Verdonk, J. C., van Ieperen, W., Carvalho, D. R., van Geest, G., & Schouten, R. E. (2023). Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, 14, 1281456. https://doi.org/10.3389/fpls.2023.1281456
- Verma, J., & Singh, P. (2021). Post-harvest handling and senescence in flower crops: An overview. Agricultural Reviews, 42(2), 145-155. https://doi.org/10.18805/ag.R-1992
- Villagran, E., Rocha, G. A. O., Mojica, L., Florez-Velazquez, J., Aguilar, C. E., Gomez, L., & Numa, S. (2024). Scientific analysis of cut flowers: a review of the main technical issues developed. Ornamental Horticulture, 30, e242699. https://doi.org/10.1590/2447-536X.v30.e242699
- Yang, M., Tao, L., Kang, X. R., Li, L. F., Zhao, C. C., Wang, Z. L., ... & Tian, Y. (2022). Recent developments in Moringa oleifera Lam. polysaccharides: A review of the relationship between extraction methods, structural characteristics and functional activities. Food Chemistry: X, 14, 100322. https://doi.org/10.1016/j.fochx.2022.100322
- Yasemin, S., & Beruto, M. (2024). A Review on Flower Bulb Micropropagation: Challenges and Opportunities. Horticulturae, 10(3), 284. https://doi.org/10.3390/horticulturae10030284
- Yuniati, N., Kusumiyati, K., Mubarok, S., & Nurhadi, B. (2022). The role of moringa leaf extract as a plant biostimulant in improving the quality of agricultural products. Plants, 11(17), 2186. https://doi.org/10.3390/plants11172186
- Zeng, F., Xu, S., Geng, X., Hu, C., & Zheng, F. (2023). Sucrose+ 8-HQC improves the postharvest quality of lily and rose cut flowers by regulating ROS-scavenging systems and ethylene release. Scientia Horticulturae, 308, 111550. https://doi.org/10.1016/j.scienta.2022.111550
Full Text:
Note: Kindly Login or Register to gain access to this article.
ISSN 2984-8385 (Online)
ISSN 2984-8288 (Print)