HomeJournal of Interdisciplinary Perspectivesvol. 3 no. 4 (2025)

Development and Evaluation of Blue Ternate Flower (BTFEpP) and Bougainvillea Bract (BBEpP) as Novel Localized pH Paper Indicator

Cherry May Rodriguez | Joefaith Endam | Daneth Joyce Gumahad | Andray Pollente | Phil Christian Fernandez | Dharell Cervantes | Christopher Bernard S Benong | Jesson B. Belen

Discipline: Chemistry

 

Abstract:

The increasing integration of technology into education requires innovative solutions, particularly in resource-constrained environments. Most low- and middle-income regions have several schools facing challenges brought on by inadequate resources for science education, which in turn lead to students’ poor performance in the subject. To address this, educators in the Philippines have begun developing low-cost, locally sourced teaching materials. This study explores the development of localized pH paper (LpP) using the extracts obtained from blue ternate flowers (BTFEpP) and bougainvillea bract (BBEpP). By conducting controlled experiments, the research evaluates the sensitivity and effectiveness of these LpPs as compared to commercial pH paper. The findings suggest that locally developed pH papers can provide a cost-effective, environmentally friendly alternative for educational purposes, offering a viable solution for enhancing science learning in under-resourced schools. Furthermore, the FTIR analysis confirmed the presence of hydroxyl groups, aromatic compounds, and esters—key functional groups responsible for their pH-indicating properties. However, further studies are needed to conduct a structural analysis of these bioactive compounds using techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Given these promising outcomes, further research is recommended to assess the shelf life and long-term stability of these localized pH papers under various storage conditions.



References:

  1. Balbon, A. N. E. (2020). Localized Apparatus in Teaching Geometrical Optics (Thesis). Foundation University
  2. Benong, C. B. S., Benong, S. A. T., & Belen, J. B. (2024). Development and Assessment of Kamote Leaf Extract as Potential Localized pH Paper. Journal of Interdisciplinary Perspectives, 2(12), 1-1. https://doi.org/10.69569/jip.2024.0534
  3. Benong, C. B. S., Benong, S. A. T., Futalan, M. C. Z., & Piñero, B. A. (2024). Relationship Between Grade 7 Students’ Interest and Their Performance in Acid-Base Lessons Using LoLiPap and CIS. Journal of Interdisciplinary Perspectives, 2(11), 1-1. https://doi.org/10.69569/jip.2024.0513
  4. Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 2611. https://doi.org/10.1038/s41598-020-59451-z
  5. Darman, D. R., Suhandi, A., Kaniawati, I., Samsudin, A., & Wibowo, F. C. (2024). Virtual laboratory in physics education: A systematic review. AIP Conference Proceedings. https://doi.org/10.1063/5.0210640
  6. Estipular, M. K. L., & Roleda, L. S. (2018). The Use of Interactive Lecture Demonstration with Interactive Simulation in Enhancing Students’ Conceptual Understanding in Physics. Retrieved from https://tinyurl.com/yeyk3nz7
  7. Farida, S., Saati, E. A., Damat, D., Wahyudi, A., & Van Minh, N. (2024). Identification of Functional Groups and Types of Anthocyanin Pigments of Purple Sweet Potato cv. Antin 2 and cv. Antin 3. In BIO Web of Conferences (Vol. 104, p. 00040). EDP Sciences. https://doi.org/10.1051/bioconf/202410400040
  8. Fia, S., Schreiber, R., & Khanna, T. (2022). The impact of resource constraints on student learning outcomes: A global perspective. International Journal of Educational Research, 118, 102888. https://doi.org/10.1016/j.ijer.2022.102888
  9. Gerald-Goins, T., Weems, K., Jackson, C., & Goins, G. (2021). Food, energy and water learning module workbooks: Low-cost affordable inquiry-based STEM curricula. Journal of STEM Outreach, 4(1), 1-15. https://doi.org/10.15695/jstem/v4i1.10
  10. Gonzales, A. C., Santos, M. T., & Reyes, J. A. (2022). Innovations in science education: Development of open-source resources and low-cost science kits in the Philippines. Education and Information Technologies, 27(5), 6675-6692. https://doi.org/10.1007/s10639-022-10742-2
  11. Jabeen, M., Tariq, K., Rehman, A., Aslam, N., Zafar, A. M., & Hussain, S. U. (2022). Evaluation of Improvised and Eco-Friendly Natural pH-Paper Indicators. Frontiers In Chemical Sciences, 3(2), 22-31. https://doi.org/10.52700/fcs.v3i2.58
  12. Kenari, R. E., & Razavi, R. (2022). Encapsulation of bougainvillea (Bougainvillea spectabilis) flower extract in Urtica dioica L. seed gum: Characterization, antioxidant/antimicrobial properties, and in vitro digestion. Food Science & Nutrition, 10(10), 3436-3443. https://doi.org/10.1002/fsn3.2944
  13. Koshy, K., Samuel, T., & Sharma, P. (2022). Blue Ternate extract as a potential pH indicator: A comparative study. Analytical and Bioanalytical Chemistry, 414(8), 2567-2578. https://doi.org/10.1007/s00216-022-03850-9
  14. Koshy, R. R., Reghunadhan, A., Mary, S. K., Pillai, P. S., Joseph, S., & Pothen, L. A. (2022). pH indicator films fabricated from soy protein isolate modified with chitin nanowhisker and Clitoria ternatea flower extract. Current Research in Food Science, 5, 743–751. https://doi.org/10.1016/j.crfs.2022.03.015
  15. Lu, L., Wang, X., Wang, T., Shen, X., Sun, X., Tian, P., ... & Yuan, Q. (2024). A bacterial platform for producing aromatic esters from glycerol. Nature Chemical Engineering, 1(12), 751-764. https://doi.org/10.1038/s44286-024-00148-9
  16. Mathai, R. V., Mitra, J. C., & Sar, S. K. (2021). Phytochemical and qualitative characterization of leaves of some noteworthy medicinal plants of Chhattisgarh, India. Rasayan J. Chem, 14, 1423-1434. http://dx.doi.org/10.31788/RJC.2021.1426281
  17. McEwan, P. G., & Barlow, F. M. (2020). The state of science education in low and middle-income countries: Access, equity, and quality. International Journal of Educational Development, 74, 102128. https://doi.org/10.1016/j.ijedudev.2020.102128
  18. Mitarlis, M., Azizah, U., & Yonata, B. (2019). Utilization Of Colored Flowers as An Alternative Learning Media of Acid Base Indicator On Basic Chemistry Course With Green Chemistry Insight. In National Seminar on Chemistry 2019 (SNK-19) (pp. 178-182). Atlantis Press. https://doi.org/10.2991/snk-19.2019.36
  19. Mohzana, M., Murcahyanto, H., Fahrurrozi, M., & Supriadi, Y. N. (2023). Optimization of Management of Laboratory Facilities in the Process of Learning Science at High School. Jurnal Penelitian Pendidikan IPA, 9(10), 8226–8234. https://doi.org/10.29303/jppipa.v9i10.5249
  20. Multisona, R. R., Shirodkar, S., Arnold, M., & Gramza-Michalowska, A. (2023). Clitoria ternatea flower and its bioactive compounds: potential use as microencapsulated ingredient for functional foods. Applied Sciences, 13(4), 2134. https://doi.org/10.3390/app13042134
  21. Nascimento, J. V., Giuliangeli, V. C., Kato, T., Calliari, C. M., & Shirai, M. A. (2021). Compostos fenólicos e capacidade antioxidante de extratos de flor de Clitoria ternatea L. Research, Society and Development, 10(11), e218101119450–e218101119450. https://doi.org/10.33448/rsd-v10i11.19450
  22. Opara, L. U. (2024). Scarcities Of Modern Office Equipment In Vocational Education Laboratories In South Eastern Nigeria. Retrieved from https://tinyurl.com/4nnp2a98
  23. Pakolpakçıl, A., Karaca, E., & Becerir, B. (2018). Investigation of a Natural pH-Indicator Dye for Nanofibrous Wound Dressings. IOP Conference Series Materials Science and Engineering, 460, 012020. https://doi.org/10.1088/1757-899x/460/1/012020
  24. Parochelin, C. C. A. (n.d.). Teacher-Made Con-Local Learning Kit as a Supplementary Learning Material in Practical Research I HUMSS Learners. Retrieved from  https://tinyurl.com/4uc5bnw5
  25. Peralta, J., Bitencourt-Cervi, C. M., Maciel, V. B., Yoshida, C. M., & Carvalho, R. A. (2019). Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packaging and Shelf Life, 19, 47–55. https://doi.org/10.1016/j.fpsl.2018.11.017
  26. Reyes, J. A. (2019). Enhancing science engagement through indigenous materials: Evidence from the Philippines. International Journal of Science Education, 41(10), 1302-1318. https://doi.org/10.1080/09500693.2019.1601673
  27. Sahu, N., & Saxena, J. (2013). Phytochemical analysis of Bougainvillea glabra Choisy by FTIR and UV-VIS spectroscopic analysis. Int. J. Pharm. Sci. Rev. Res, 21(1), 196-198. https://tinyurl.com/55rej5m8
  28. Sanchez, J. M. P., Fernandez, M. J. U., Abgao, J. M. O., Sarona, H. H., Asenjo, S. B. C., Guiroy, B. V., ... & Vale, X. M. (2021). Experimenting on natural acid-base indicators: A home-based chemistry activity during the COVID-19 pandemic as evaluated by teachers. Kimika, 32(1), 34-45. https://doi.org/10.26534/kimika.v32i1.34-45
  29. Syahirah L, N. F., Lutfi MY, M. U., A, A., Hafiz R, M., Zulhelmi OA, M., Adzhan O, M. A., & PY, K. (2018). A Comparative Analysis of Clitoria ternatea Linn. (Butterfly Pea) Flower Extract as Natural Liquid pH Indicator and Natural pH Paper. Dhaka University Journal of Pharmaceutical Sciences, 17(1), 97–103. https://doi.org/10.3329/dujps.v17i1.37125
  30. Turnos, L. J. N. (2021). Blue ternate (Clitoria ternatea L.): nutritive analysis of flowers and seeds. Asian Journal of Fundamental and Applied Sciences, 2(2), 103-112. http://myjms.mohe.gov.my/index.php/ajfas
  31. Wang, F., Yao, G., Li, J., Zhu, W., Li, Z., Sun, Z., & Xin, P. (2024). Mining and expression analysis of color related genes in Bougainvillea glabra bracts based on transcriptome sequencing. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-73964-x
  32. Wiyantoko, B., & astuti, A. (2020). Butterfly Pea (Clitoria Ternatea L.) Extract as Indicator of Acid-Base Titration. Indonesian Journal of Chemical Analysis (IJCA), 3(1), 22–32.  https://doi.org/10.20885/ijca.vol3.iss1.art4
  33. Wu, Q., Fu, X., Chen, Z., Wang, H., Wang, J., Zhu, Z., & Zhu, G. (2022). Composition, color stability and antioxidant properties of betalain-based extracts from bracts of Bougainvillea. Molecules, 27(16), 5120. https://doi.org/10.3390/molecules27165120
  34. Zhang, H., Ying, Z. E. N. G., Sheng, Q., & Zunling, Z. H. U. (2024). Variation characteristics of color parameters and pigment content in bracts at different flowering stages among various cultivars of Bougainvillea spectabilis. Journal of Central South University of Forestry & Technology, 44(2), 157-165. https://doi.org/10.14067/j.cnki.1673-923x.2024.02.017