Copepod distribution and diversity in the coastal areas of Ban-ao and Lambajon, Davao Oriental, Philippines: Environmental influences and conservation implications
Hanelen Pislan | Cirilo O. Ybanez Jr.
Discipline: environmental sciences
Abstract:
Copepods are essential components of marine ecosystems, facilitating energy
transfer within these complex systems. The study investigates copepod diversity and
distribution in Ban-ao and Lambajon coastal areas in Baganga, Davao Oriental, highlighting
the environmental factors influencing copepod populations. Four copepod families
representing different orders were identified, with Harpacticoida, Calanoida,
and Cyclopoida prevalent in both sites, while Misophrioida was exclusive to
Lambajon. Physico-chemical parameters such as dissolved oxygen (DO), pH, salinity,
sediment composition, water depth, and temperature were analyzed to understand
their correlation with copepod density. The study reveals variations in copepod
density and abundance between the sites, with Lambajon showing a higher total
density (49 ind/cm³) compared to Ban-ao (35 ind/cm³). The Pearson correlation matrix
illustrates complex relationships between copepod density and environmental parameters
in each site. In Ban-ao, strong positive correlations were found between copepod
density and DO (r = 0.65) and temperature (r = 0.36). In Lambajon, positive correlations
existed between water depth and copepod density (r = 0.20). Both sites exhibit
low copepod diversity overall, potentially due to anthropogenic pressures. These
findings emphasize the need for further research to understand the interactions
between environmental factors and copepod diversity, essential for effective conservation
and management strategies in these coastal ecosystems.
References:
- Abdulkarim, M., Grema, H. M., Adamu, I. H., Mueller, D., Schulz, M., Ulbrich, M., and Preusser, F. (2021). Effect of using different chemical dispersing agents in grain size analyses of fluvial sediments via laser diffraction spectrometry. Methods and protocols, 4(3), 44. https://doi.org/10.3390/mps4030044
- Anderson, T. R., Hessen, D. O., and Mayor, D. J. (2021). Is the growth of marine copepods limited by food quantity or quality?. Limnology and Oceanography Letters, 6(3), 127-133. https://doi.org/10.1002/lol2.10184
- Angara, E. V., Rillon, G. S., Carmona, M. L., Ferreras, J. E. M., Vallejo, M. I., Jamodiong, E., and Lacuna, M. L. (2013). Mesozooplankton composition and abundance in San Ildefonso Cape, Casiguran, Aurora, Northern Philippines. Aquaculture, Aquarium, Conservation & Legislation, 6(6), 539-559. https://www.researchgate.net/publication/260186798_Mesozooplankton_composition_and_abundance_in_San_Ildefonso_Cape_Casiguran_Aurora_Northern_Philippines
- Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck, O. (2018). Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284. https://doi.org/10.1111/geb.12693
- Behbehani, M., Uddin, S., Dupont, S., Fowler, S. W., Gorgun, A. U., Al-Enezi, Y., and Faizuddin, M. (2022). Ocean Acidification-Mediated Food Chain Transfer ofPolonium between Primary Producers and Consumers. Toxics, 11(1), 14. https://doi.org/10.3390/toxics11010014
- Behbehani, M., Uddin, S., Habibi, N., Al-Sarawi, H. A., and Al-Enezi, Y. (2023). The Reproductive Capacities of the Calanoid Copepods Parvocala-nus crassirostis and Acartia pacifica under Different pH and Temperature Conditions. Animals, 13(13), 2160. https://doi.org/10.3390/ani13132160
- De Troch, M., Melgo-Ebarle, J. L., Angsinco-Jimenez, L., Gheerardyn, H., and Vincx, M. (2008). Diversity and habitat selectivity of harpacticoid copepods from sea grass beds in Pujada Bay, the Philippines. Journal of the marine biological Association of the United Kingdom, 88(3), 515-526. https://www.cambridge.org/core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom/article/abs/diversity-and-habitat-selectivity-of-harpacticoid-copepods-from-sea-grass-beds-in-pujada-bay-the-philippines/DB4FE1BF03FF9D3CC9BC00F914F9447A
- Dela Paz, E. S. P., Lopez, M. L. D., David, C. I. H. A., Dela Cruz, D. R. A., Viernes, G. A. A., Wong, J. F., and Papa, R. D. S. (2018). Fresh-water microcrustaceans (Cladocera: Anomopoda and Ctenopoda, Copepoda: Cyclopoida and Calanoida) in the highlyurbanized Metropolitan Manila area (Luzon, Philippines). 14(5). https://doi.org/10.15560/14.5.751
- Desa, E., Zingde, M. D., Vethamony, P., Babu, M. T., D’Sousa, S. N., and Verlecar, X. N. (2005). Dissolved oxygen—a target indicator in determining use of the Gulf of Kachchh waters. Marine Pollution Bulletin, 50(1), 73-79. https://doi.org/10.1016/j.marpolbul.2004.08.014
- Doan, N. X., Vu, M. T., Pham, H. Q., Wisz, M. S., Nielsen, T. G., and Dinh, K. V. (2019). Extreme temperature impairs growth and productivity in a common tropical marine copepod. Scientific Reports, 9(1), 4550. https://www.nature.com/articles/s41598-019-40996-7
- Fajardo, L. J., Lebeng, R. S., Morales, M. L., andReyes, A. T. (2022). Plankton abundance and diversity in Pantabangan Reservoir, Pantabangan, Nueva Ecija, Philippines. AACL Bioflux, 15(3), 1541-1552.
- Felix, M., Ybanez Jr, C., and Macusi, E. (2022).Assemblages of Benthic Foraminifera in Pujada Island, Davao Oriental, Philippines. Davao Research Journal, 13(1), 91-111. https://doi.org/10.59120/drj.v13i1.92
- Fernández de Puelles, M. L., Gazá, M., Cabanellas-Reboredo, M., Santandreu, M. D. M., Irigoien, X., González-Gordillo, J. I., and Hernández-León, S. (2019). Zooplankton abundance and diversity in the tropical and subtropical ocean.Diversity, 11(11), 203.
- Fields, D. M., Runge, J. A., Thompson, C. R., Durif, C. M., Shema, S. D., Bjelland, R. M., and Browman, H. I. (2023). A positive temperature-dependent effect of elevated CO2 on growth and lipid accumulation in the planktonic copepod, Calanus finmarchicus. Lim-nology and Oceanography, 68, S87-S100. https://doi.org/10.1002/lno.12261
- Giere, O. (2009). Meiobenthology themicroscopicmotile fauna of aquatic sediments, 2nd edn. Springer-Verlag, Berlin. Scientific Press, Moscow, pp.159–176. https://link.springer.com/book/10.1007/978-3-540-68661-3
- Grodzins, M. A., Ruz, P. M., and Keister, J. E. (2016). Effects of oxygen depletion on field distributions and laboratory survival of the marine copepod Calanus pacificus. Journal of Plankton Research, 38(6), 1412-1419. https://doi.org/10.1093/plankt/fbw063
- Halsband, C., Dix, M. F., Sperre, K. H., and Reinardy, H. C. (2021). Reduced pH increases mortality and genotoxicity in an Arctic coastal copepod, Acartia longiremis. Aquatic Toxicology, 239, 105961. https://doi.org/10.1016/j.aquatox.2021.105961
- He, X., Pan, Z., Zhang, L., and Han, D. (2021). Physiological and behavioral responsesof the copepod Temora turbinata to hypoxia. Marine Pollution Bulletin, 171, 112692. https://doi.org/10.1016/j.marpolbul.2021.112692
- Higgins, R. P., and Thiel, H. (1989). Introduction to the study of meiofauna pp.120 – 122, 134 – 136. Smithsonian Institution Press: Washington, D.C. London. https://archive.org/details/introductiontost0000unse_v8q5?utm_source=chatgpt.com
- Jaspe, B. T., Campos, W. L., and Metillo, E. (2020). Abundance, Distribution and Species Composition of Cyclopoid Copepods Along a Transect Traversing the Upwelling Zone off Northern Zamboanga Peninsula, Philippines. Asian Fisheries Science, 33(4). DOI:10.33997/j.afs.2020.33.4.001
- Jyothibabu, R., Jagadeesan, L., Karnan, C., Arunpandi, N., Pandiyarajan, R. S., and Balachandran, K. K. (2018). Ecological indications of copepods to oxygen-deficient near-shore waters. Ecological Indicators, 93, 76-90.
- Kayfetz, K., and Kimmerer, W. (2017). Abiotic and biotic controls on the copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary. Marine Ecology Progress Series, 581, 85-101.
- Kilfoyle, A. K. (2017). Exploring the Potential for Artificial Reefs in Coral Reef Restoration: Responses and Interac-tions of Associated Biota to Varying Experimental Treatments in the Mexican Caribbean. Nova Southeastern University.
- Kim, B. M., Lee, Y., Hwang, J. Y., Kim, Y. K., Kim, T. W., Kim, I. N., and Rhee, J. S. (2022). Physiological and molecular responses of the Antarctic harpacticoid copepod Tigriopus kingsejongensis to salinity fluctuations–A multigenerational study. Environmental Research, 204, 112075. https://doi.org/10.1016/j.envres.2021.112075
- Korbel, K. L., Stephenson, S., and Hose, G. C. (2019). Sediment size influences habitat selection and use by ground-water macrofauna and meiofauna. Aquatic Sciences, 81, 1-10.
- Lenz, P. H., Takagi, D., and Hartline, D. K. (2015). Choreographed swimming of copepod nauplii. Journal of The Royal Society Interface, 12(112), 20150776. https://doi.org/10.1098/rsif.2015.0776
- Low, J. S., Chew, L. L., Ng, C. C., Goh, H. C., Lehette, P., and Chong, V. C. (2018). Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum. Journal of thermal biology, 74, 14-22. https://doi.org/10.1016/j.jtherbio.2018.02.012
- Magouz, F. I., Essa, M. A., Matter, M., Mansour,A. T., Gaber, A., and Ashour, M. (2021). Effect of different salinity levels on population dynamics and growth of the cyclopoid copepod Oithona nana. Diversity, 13(5), 190. https://doi.org/10.3390/d13050190
- Ngochera, M. J., and Bootsma, H. A. (2018). Carbon, nitrogen and phosphorus content of seston and zooplankton in tropical LakeMalawi: Implications for zooplanktonnutrient cycling. Aquatic ecosystem health & management, 21(2), 185-192. https://doi.org/10.1080/14634988.2017.1280294
- Nogueira, N., Sumares, B., Andrade, C. A. P., and Afonso, A. (2018). The effects of temperature and photoperiod on egg hatching success, egg production and population growth of the calanoid copepod, Acartia grani (Calanoida: Acartiidae). Aquaculture research, 49(1), 93-103. https://doi.org/10.1111/are.13437
- Pitois, S. G., Graves, C. A., Close, H., Lynam, C., Scott, J., Tilbury, J., and Culverhouse, P. (2021). A first approach to build and test the Copepod Mean Size and Total Abundance (CMSTA) ecological indicator using in-situ size measurements from the Plankton Imager (PI). Ecological Indicators,123, 107307. https://doi.org/10.1016/j.ecolind.2020.107307
- Roman, M. R., and Pierson, J. J. (2022). Interactive effects of increasing temperature and decreasing oxygenon coastal copepods. The Biological Bulletin, 243(2), 171-183. https://www.journals.uchicago.edu/doi/10.1086/722111
- Roswell, M., Dushoff, J., and Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos,130(3), 321-338. https://doi.org/10.1111/oik.07202
- Santhanam, P., Pachiappan, P., and Begum, A. (2019). A method of collection, preservation and identification of Marine Zooplankton. Basic and Applied zooplankton biology, 1-44. https://link.springer.com/chapter/10.1007/978-981-10-7953-5_1
- Sasaki, M., and Dam, H. G. (2021). Global patterns in copepod thermal tolerance. Journal of Plankton Research, 43(4), 598-609.
- Soulié, T., Engström-Öst, J., and Glippa, O. (2022). Copepod oxygen consumption along a salinity gradient. Marine and Freshwater Behaviour and Physiology, 55(5-6), 107-119.
- Steck, M., Theam, K. C., and Porter, M. L. (2023). The Cornucopia of Copepod Eyes: The Evolution of Extreme Visual System Novelty. Distributed Vision: From Simple Sensors to Sophis-ticated Combination Eyes, 223-266.
- Suárez-Morales, E., and Fuentes-Reinés, J. M. (2015). Two new species of ectinosomatid copepods (Harpacticoida: Ectinosomatidae) from the Caribbeancoast of Colombia. Revista mexicana de biodiversidad, 86(1), 14-27.
- Suárez-Morales, E., Gutiérrez-Aguirre, M. A., Gómez, S., Perbiche-Neves, G., Previattelli, D., dos Santos-Silva, E. N., and Santana-Piñeros, A. M. (2020). Class Copepoda. In Thorp and Covich’s freshwater invertebrates (pp. 663-796). Academic Press.
- Tuwo, A., and Tresnati, J. (2015). Sea Cucumber Farming in Southeast Asia (Malaysia, Philippines, Indonesia, Vietnam). Echinoderm Aquaculture,331-352. https://doi.org/10.1002/9781119005810.ch15
- Vaughn, C. C., and Hoellein, T. J. (2018). Bivalve impacts in freshwater andmarine ecosystems. Annual Review of Ecology, Evolution, and Systematics,49, 183-208. https://doi.org/10.1146/annurev-ecolsys-110617-062703
- Wagner, M., Benac, Č., Pamić, M., Bračun, S., Ladner, M., Plakolm, P. C., and Brandl, S. J. (2023). Microhabitat partitioning between sympatric intertidal fish species highlights the importance of sediment composition in gravel beach conservation. Ecology and evolution, 13(7), e10302. https://doi.org/10.1002/ece3.10302
- Yildiz, N. Ö., and Karaytuğ, S. (2018). Harpacticoida (Crustacea: Copepoda) of the three islands on Aegean Sea (Turkey) with eight new records. Mediterranean Fisheries and Aquaculture Research, 1(2), 57-65. https://dergipark.org.tr/en/pub/medfar/issue/37150/406311
- Zakaria, H. Y., Hassan, A. K. M., Abo-Senna, F. M., and El-Naggar, H. A. (2016). Abundance, distribution, diversity and zoogeography of epipelagic copepods off the Egyptian Coast (Mediterranean Sea). The Egyptian Journal of Aquatic Research, 42(4), 459-473. DOI:10.1016/j.ejar.2016.11.001
- Zupo, V., and Hodgson, A. N. (2022). Sexual Biology and Reproduction. Crustaceans: Endocrinology, Biology and Aquaculture. https://www.taylorfrancis.com/chapters/edit/10.1201/9780367853426-3/sexual-biology-reproduction-valerio-zupo-alan-hodgson
ISSN 2984-7125 (Online)
ISSN 2244-4432 (Print)