HomeDAVAO RESEARCH JOURNALvol. 15 no. 4 (2024)

Comparative Growth Performance Of Nile Tilapia (Oreochromis Niloticus) Sex Groups In Tank Culture: A Hormone-Free Approach For Sustainable Aquaculture In Dodoma, Tanzania

Angelina Michael | Rosemary Peter Mramba

Discipline: Agriculture

 

Abstract:

Male tilapia are globally preferred in aquaculture for their superior growth and uniform harvest sizes. However, hormonal sex reversal techniques used to produce all-male populations can pose health and environmental risks. This study investigated the growth performance of manually separated monosex males, monosex females, and mixed-sex groups of Nile tilapia (Oreochromis niloticus) in tank culture as a sustainable and hormonefree alternative. Over six weeks, the study measured various morphometric parameters, weight gain, specific growth rates, water quality parameters, and condition factors. The fish were fed isonitrogenous commercial feed, and the feeding regime was adjusted based on their weight. Results revealed that monosex tilapia groups attained higher growth rates than mixed-sex groups, with males achieving an average final weight of 56.5 g, followed by females at 53.3 g, and mixed-sex groups at 43.3 g. Males had higher morphometric values compared to females and mixed-sex groups. The water quality parameters remained optimal across all groups, indicating that sex composition does not impact water management. Monosex females and mixed-sex groups exhibited better condition factors. The study concludes that tilapia farming can be effectively conducted with either mono-sex male or mono-sex female tilapia, as their growth rates do not differ significantly. Further research and development of techniques to ease the separation of sexes and enhance the growth rates of monosex female tilapia are recommended as a viable, hormone-free alternative for sustainable aquaculture.



References:

  1. Akhand, R. (2014). Growth performance of Genetically Male Tilapia (GMT) derived from YY male, Sex Reversed Male (SRT) and Mixed Sex Tilapia (MST) of Oreochromis niloticus in earthen pond aquaculture system. International Journal of Fisheries and Aquatic Studies, 2(3), 186–191. https://www.fisheriesjournal.com/vol2issue3/47.1.html
  2. Araujo, G. S., Silva, J. W. A. da, Cotas, J., and Pereira, L. (2022). Fish Farming Techniques: Current Situation and Trends. Journal of Marine Science and Engineering, 10(11), Article 11. https://doi.org/10.3390/jmse10111598
  3. Atar, H. H., Bekcan, S., and Dogankaya, L. (2009). Effects of Different Hormones on Sex Reversal of Rainbow Trout (Oncorhynchus mykiss Walbaum) and Production of All-Female Populations. Biotechnology & Biotechnological Equipment, 23(4), 1509–1514. https://doi.org/10.2478/V10133-009-0002-X
  4. Azaza, M. S., Dhraïef, M. N., and Kraïem, M. M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, 33(2), 98–105. 10.1016/j.jtherbio.2007.05.007
  5. Bardhan, A., Sau, S. K., Khatua, S., Bera, M., and Paul, B. N. (2021). A review on the production and culture techniques of monosex tilapia. International Journal of Current Microbiology and Applied Sciences, 10(1), 565–577. https://www.ijcmas.com/abstractview.php?ID=20913&SNo=69&vol=10-1-2021
  6. Bhatta, S., Iwai, T., Miura, T., Higuchi, M., Maugars, G., and Miura, C. (2012). Differences between male and female growth and sexual maturation in tilapia (Oreochromis mossambicus). Kathmandu University Journal of Science, Engineering and Technology, 8(2), 57–65.
  7. Binuramesh, C., Prabakaran, M., Steinhagen, D., and Michael, R. D. (2006). Effect of sex ratio on the immune system of Oreochromis mossambicus (Peters). Brain, Behavior, and Immunity, 20(3), 300–308.
  8. Bombardelli, R. A., dos Reis Goes, E. S., de Negreiros Sousa, S. M., Syperreck, M. A., Goes, M. D., de Oliveira Pedreira, A. C., and Meurer, F. (2017). Growth and reproduction of female Nile tilapia fed diets containing different levels of protein and energy. Aquaculture, 479, 817–823.
  9. Bozynski, C. C. (1998). Interactions between growth, sex, reproduction, and activity levels in control and fast-growing strains of Nile tilapia (Oreochromis niloticus) [PhD Thesis, University of British Columbia].
  10.  Budd, A. M., Banh, Q. Q., Domingos, J. A., and Jerry, D. R. (2015). Sex Control in Fish: Approaches, Challenges and Opportunities for Aquaculture. Journal of Marine Science and Engineering, 3(2), Article 2. https://doi.org/10.3390/jmse3020329
  11. Cantrell, D. (2023). Aquaculture: Sustainable Food Production. In R. Brinkmann (Ed.), The Palgrave Handbook of Global Sustainability (pp. 679–701). Springer International Publishing. https://doi.org/10.1007/978-3-031-01949-4_196
  12. Cech, J. J., Massingill, M. J., Vondracek, B., and Linden, A. L. (1985). Respiratory metabolism of mosquitofish, Gambusia affinis: Effects of temperature, dissolved oxygen, and sex difference. Environmental Biology of Fishes, 13(4), 297–307. https://doi.org/10.1007/BF00002914
  13. Chakraborty, S. B., Mazumdar, D., Chatterji, U., and Banerjee, S. (2011). Growth of Mixed-Sex and Monosex Nile Tilapia in Different Culture Systems. Turkish Journal of Fisheries and Aquatic Sciences, 11(1).
  14. Chang, W. Y., and Ouyang, H. (1988). Dynamics of dissolved oxygen and vertical circulation in fish ponds. Aquaculture, 74(3–4), 263–276.
  15. Chen, J., Fan, Z., Tan, D., Jiang, D., and Wang, D. (2018). A Review of Genetic Advances Related to Sex Control and Manipulation in Tilapia. Journal of the World Aquaculture Society, 49(2), 277–291. https://doi.org/10.1111/jwas.12479
  16. Dagne, A., Degefu, F., and Lakew, A. (2013). Comparative growth performance of mono-sex and mixed-sex Nile tilapia (Oreochromis niloticus L.) in pond culture system at Sebeta, Ethiopia. International Journal of Aquaculture, 3.
  17. Dan, N. C., and Little, D. C. (2000). The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam. Aquaculture, 184(3–4), 221–231.
  18. Datta, S. (2012). Management of water quality in intensive aquaculture. Respiration, 6(602), 1–18.
  19. DeLong, D. P., Losordo, T., and Rakocy, J. (2009). Tank culture of tilapia (Vol. 282). Southern Regional Aquaculture Center Stoneville, MS, USA.
  20. Dutta, H. (1994). Growth in fishes. Gerontology, 40(2–4), 97–112.
  21. El-Sayed, A. M., and Fitzsimmons, K. (2023). From Africa to the world—The journey of Nile tilapia. Reviews in Aquaculture, 15(S1), 6–21. https://doi.org/10.1111/raq.12738
  22. El-Sayed, A.-F. M. (2013). On-farm feed management practices for Nile tilapia (Oreochromis niloticus) in Egypt. In On-Farm Feeding and Feed Management in Aquaculture (pp. 101–129).
  23. El-Sayed, A.-F. M., Abdel-Aziz, E.-S. H., and Abdel-Ghani, H. M. (2012). Effects of phytoestrogens on sex reversal of Nile tilapia (Oreochromis niloticus) larvae fed diets treated with 17α-Methyltestosterone. Aquaculture, 360, 58–63.
  24. El-Sayed, A.-F. M., and Kawanna, M. (2008). Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquaculture Research, 39(6).
  25. Freitas, J., Vaz-Pires, P., and Câmara, J. S. (2020). From aquaculture production to consumption: Freshness, safety, traceability and authentication, the four pillars of quality. Aquaculture, 518, 734857.
  26. Ghosh, S., Sinha, A., and Sahu, C. (2007). Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquaculture Research, 38(5), 518–526. https://doi.org/10.1111/j.1365-2109.2007.01696.x
  27. Githukia, C. M., Ogello, E. O., Kembenya, E. M., Achieng, A. O., Obiero, K. O., and Munguti, J. M. (2015). Comparative growth performance of male monosex and mixed sex Nile tilapia (Oreochromis niloticus L.) reared in earthen ponds. Croatian Journal of Fisheries, 73(1), 20–25.
  28. Gu, D., Andreev, K., and Dupre, M. E. (2021). Major trends in population growth around the world. China CDC Weekly, 3(28), 604.
  29. Gunasekera, R. M., Shim, K. F., and Lam, T. J. (1995). Effect of dietary protein level on puberty, oocyte growth and egg chemical composition in the tilapia, Oreochromis niloticus (L.). Aquaculture, 134(1–2), 169–183.
  30. Haldén, A. N., Lindberg, J. E., and Masembe, C. (2014). Aquaculture—A fast growing food production sector. SLU Glob, 4(1), 42–45.
  31. Hernández, M., Gasca-Leyva, E., and Milstein, A. (2014). Polyculture of mixed-sex and male populations of Nile tilapia (Oreochromis niloticus) with the Mayan cichlid (Cichlasoma urophthalmus). Aquaculture, 418, 26–31.
  32. Hoga, C. A., Almeida, F. L., and Reyes, F. G. R. (2018). A review on the use of hormones in fish farming: Analytical methods to determine their residues. CyTA - Journal of Food, 16(1), 679–691. https://doi.org/10.1080/19476337.2018.1475423
  33. Huntingford, F., Jobling, M., and Kadri, S. (Eds.). (2012). Aquaculture and Behavior (1st ed.). Wiley. https://doi.org/10.1002/9781444354614
  34. Imsland, A. K., Folkvord, A., Grung, G. L., Stefansson, S. O., and Taranger, G. L. (1997). Sexual dimorphism in growth and maturation of turbot, Scophthalmus maximus (Rafinesque, 1810). Aquaculture Research, 28(2), 101–114. https://doi.org/10.1046/j.1365-2109.1997.t01-1-00829.x
  35. Karrar, A., Elkareem, M., and Ali, A. K. S. (2016). Length-weight relationship and condition factor of Nile tilapia [Oreochromis niloticus (Trewavas)] from White Nile, Sudan. Environ. Nat. Res. Int. J, 1(1), 77–84.
  36. Kisamba, F. C., and Li, F. (2022). Analysis and modelling urban growth of Dodoma urban district in Tanzania using an integrated CA–Markov model. Geo-Journal, 88(1), 511–532. https://doi.org/10.1007/s10708-022-10617-4
  37. Kolding, J., Haug, L., and Stefansson, S. (2008). Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences, 65(7), 1413–1424. https://doi.org/10.1139/F08-059
  38. Lal, J., Vaishnav, A., Kumar, D., Jana, A., Jayaswal, R., Chakraborty, A., Kumar, S., and Pavankalyan, M. (2024). Emerging innovations in aquaculture: Navigating towards sustainable solutions. International Journal of Environment and Climate Change, 14(7), 83–96.
  39. Lee, R. (2011). The Outlook for Population Growth. Science, 333(6042), 569–573. https://doi.org/10.1126/science.1208859
  40. Lind, C. E., Safari, A., Agyakwah, S. K., Attipoe, F. Y. K., El-Naggar, G. O., Hamzah, A., Hulata, G., Ibrahim, N. A., Khaw, H. L., and Nguyen, N. H. (2015). Differences in sexual size dimorphism among farmed tilapia species and strains undergoing genetic improvement for body weight. Aquaculture Reports, 1, 20–27.
  41. Liu, J., Wang, R., Huang, B., Lin, C., Wang, Y., and Pan, X. (2011). Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environmental Pollution, 159(10), 2815–2822.
  42. Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N., and Dida, G. O. (2017). Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and Aquatic Sciences, 20(1), 30. https://doi.org/10.1186/s41240-017-0075-7
  43. Miao, W., and Wang, W. (2020). Trends of aquaculture production and trade: Carp, tilapia, and shrimp. Asian Fisheries Science, 33(S1), 1–10.
  44. Mramba, R. P., and Kahindi, E. J. (2023). The status and challenges of aquaculture development in Dodoma, a semi-arid region in Tanzania. Aquaculture International, 31(3), 1551–1568. https://doi.org/10.1007/s10499-022-01041-z.
  45. Msengi, C. M., Mjemah, I. C., Makoba, E. E., and Mussa, K. R. (2024). Hydrogeochemical characterization and assessment of factors controlling groundwater salinity in the Chamwino granitic complex, central Tanzania. Heliyon, 10(7).