HomeAnnals of Tropical Researchvol. 47 no. 2 (2025)

Color quality and pedicel abscission of calamansi (x Citrofortunella microcarpa) stored in CoolBot-equipped cold room

Emma Ruth V. Bayogan | Maria Victoria O. Pasilan | Leizel B. Secretaria | Michael Angela J. Urquiola | Jenny H. Ekman

 

Abstract:

Calamansi or calamondin, also known as the Philippine lime (x Citrofortunella macrocarpa), is a vitamin C-rich citrus fruit with a growing demand in the food industry. However, calamansi fruit is highly perishable and has limited shelf life. In this study, the quality and shelf life of calamansi fruit was evaluated under two different storage conditions: a CoolBot-equipped cold room (12.78°C±5.04°C; 80.22% ±10.04% RH) and ambient conditions (26.85°C ±0.50°C; 85.8% ± 3.60% RH). At 10 days of storage (DAS) in a CoolBotequipped cold room, 36% less fruit than those in the ambient showed ≥ 51% yellowing, indicating slower color change. At 10 DAS, the low temperature storage resulted in fruit weight loss reduced by up to 5.8%; slower pedicel abscission by 10% and reduced shriveling by 31%. At 15 DAS, 36% and 78% of the fruit showed ≥ 51% yellowing in CoolBot-equipped cold room and ambient, respectively. Fruit samples kept in the CoolBot-equipped cold store had more negative a* values, indicating greater greenness of the calamansi peel. Compared to ambient-stored fruit, hue was higher while the chroma was lower. Moreover, fruit stored in the CoolBot-equipped cold room exhibited better visual quality and controlled decay incidence for up to 20 days of storage. These findings indicate that the shelf life of calamansi fruit can be effectively extended in a CoolBot-equipped room due to reduced deterioration and senescence.



References:

  1. Acharya, U. K., Pakka, R., & Thapa, B. (2020). Effort to enhance storability of Nepali sweet orange (Citrus sinensis) under different storage conditions. Journal of the Institute of Agriculture and Animal Science, 36(1), 207–214. https://doi.org/10.3126/jiaas.v36i1.48420
  2. Agravante, J. U., Serrano, E. P., Masilungan, G. D., Amatorio, E. Q., Castillo, P. C., Domingo, C. L., & Paz, R. R. (2013). Postharvest losses in the supply chain of calamansi (× Citrofortunella microcarpa) and loss reduction with modified atmosphere packaging. Acta Horticulturae, 1006, 49–56. https://doi.org/10.17660/ActaHortic.2013.1006.4
  3. Ambuko, J., Karithi, E., Hutchinson, M., Wasilwa, L., Hansen, B., & Owino, W. (2018). Postharvest shelf life of mango fruits stored in a CoolBot cold room. Acta Horticulturae, 1225, 193–198. https://doi.org/10.17660/ActaHortic.2018.1225.25
  4. Bayogan, E. V., & Secretaria, L. B. (2018). Yellowing and pedicel abscission are delayed in calamansi (× Citrofortunella microcarpa) fruit treated with 1‑methylcyclopropene. Acta Horticulturae, 1213, 287–292. https://doi.org/10.17660/ActaHortic.2018.1213.41
  5. Bhusal, S., Acharya, B., Adhikari, S., Giri, H. N., Acharya, K. U., Shrestha, A. K., Adhikari, D., & Shrestha, S. (2025). Effect of storage conditions and plastic packaging on postharvest quality of mandarin (Citrus reticulata Blanco) in Dhankuta, Nepal. International Journal of Horticulture, Agriculture and Food Science, 9(2), 20–35. https://doi.org/10.22161/ijhaf.9.2.3
  6. CoolBot™. (2017). How to build a walk‑in cooler for your small farm. Retrieved from https://agriculture.sc.gov/wp-content/uploads/2017/08/How-to-Build-a-Walk-In-Cooler-for-Your-Small-Farm-3.17.pdf
  7. Habibi, F., Ramezanian, A., Guillén, F., Castillo, S., Serrano, M., & Valero, D. (2020). Changes in bioactive compounds, antioxidant activity, and nutritional quality of blood orange cultivars at different storage temperatures. Antioxidants, 9(10), 1016. https://doi.org/10.3390/antiox9101016
  8. Habibi, F., Shahid, M. A., Spicer, R. L., Voiniciuc, C., Kim, J., Gmitter Jr., F. G., Brecht, J. K., & Sarkhosh, A. (2024). Postharvest storage temperature strategies affect anthocyanin levels, total phenolic content, antioxidant activity, chemical attributes of juice, and physical qualities of blood orange fruit. Food Chemistry Advances, 4, 100722. https://doi.org/10.1016/j.focha.2024.100722
  9. Karithi, E. M. (2016). Evaluation of the efficacy of CoolBot™ cold storage technology to preserve quality and extend shelf life of mango fruits (Doctoral dissertation, University of Nairobi). University of Nairobi Research Archive. http://erepository.uonbi.ac.ke/bitstream/handle/11295/99562/KARITHI%20ESTHER%20THESIS%20Final.pdf?sequence=1&isAllowed=y
  10. Kazokas, W. C., & Burns, J. K. (1998). Cellulase activity and gene expression in citrus Fruit Abscission Zones during and after Ethylene Treatment. Journal of the American Society for Horticultural Science, 123(5), 781–786. https://doi.org/10.21273/JASHS.123.5.781
  11. Khatun, Z., Dash, P. K., & Mannan, M. A. (2022). Influence of precooling systems on postharvest quality and shelf life of dragon fruits (Hylocereus polyrhizus). Journal of the Bangladesh Agricultural University, 20(3), 313–322.https://www.researchgate.net/publication/363602699_Influence_of_precooling_systems_on_postharvest_quality_and_shelf_life_of_dragon_fruits_Hylocereus_polyrhizus
  12. Kusumaningrum, D., Lee, S. H., Lee, W. H., Mo, C., & Cho, B. K. (2015). A review of technologies to prolong the shelf life of fresh tropical fruits in Southeast Asia. Journal of Biosystems Engineering, 40(4), 345–358. https://doi.org/10.5307/JBE.2015.40.4.345
  13. Lado, J., Rodrigo, M. J., & Zacarías, L. (2015). Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits. Food Science and Technology International, 21(7), 537–546. https://doi.org/10.1177/1082013214553810
  14. Lamberte, M. (2018). Smallholder commodity systems in high-value crops: The case of calamansi and jackfruit in the Philippines. Southeast Asian Regional Center for Graduate Study and Research in Agriculture. https://serp-p.pids.gov.ph/publication/public/view?slug=smallholder-commodity-systems-in-high-value-crops-the-case-of-calamansi-and-jackfruit-in-the-philip
  15. Lamberty, A., & Kreyenschmidt, J. (2022). Ambient parameter monitoring in fresh fruit and vegetable supply chains using Internet of Things-enabled sensor and communication technology. Foods, 11(12), 1777. https://doi.org/10.3390/foods11121777
  16. Majubwa, R. O., Msogoya, T. J., Mtui, H. D., & Shango, A. J. (2022). CoolBot cold room technology enhances postharvest quality and shelf-life of tomato (Solanum lycopersicum L.) fruits. Tanzania Journal of Agricultural Sciences, 21(1), 11–21. https://www.researchgate.net/publication/352169954_CoolBot_Coldroom_Technology_Enhance_Postharvest_Quality_and_Shelf-life_of_Tomato_Solanum_lycopersicum_Fruits
  17. Philippine Statistics Authority (PSA). (n.d.). Fruits: Supply utilization accounts by commodity, year and item. Retrieved June 7, 2025, from https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__2B__AA__SU/0012B5FSUA4.px/
  18. Porat, R. (2008). Degreening of citrus fruit. Tree and Forestry Science and Biotechnology, 2(1), 71–76. http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/TFSB_2(SI1)/TFSB_2(SI1)71-76o.pdf
  19. Quijano, M. F., Quijano, G., & Diaz, R. (2021). Agricultural economic production of Philippine calamansi industry: A basis for production local development plan. Preprints. https://doi.org/10.20944/preprints202102.0388.v1
  20. Rab, A., Sajid, M., Khan, N. U., Nawab, K., Arif, M., & Khattak, M. K. (2012). Influence of storage temperature on fungal prevalence and quality of citrus fruit (cv. Blood Red). Pakistan Journal of Botany, 44(2), 831–836. https://www.researchgate.net/publication/265939793_Influence_of_storage_temperature_on_fungal_prevalence_and_quality_of_citrus_fruit_cv_Blood_Red
  21. Rymbai, H., Verma, V. K., Talang, H. D., Devi, M. B., Teja, R., Rymbai, D., & Mawlein, J. (2024). Exogenous ethylene induced degreening in colour development of citrus fruits: An overview. International Journal of Innovative Horticulture, 13, 40–48. https://indianjournals.com/article/ijih-13-1-004
  22. Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292. https://doi.org/10.1016/S0925-5214(98)00091-X
  23. Serrano, E. P., & Bautista, O. K. (2007). Physio‐chemical basis of postharvest handling. In O. K. Bautista & E. B. Esguerra (Eds.), Postharvest technology for Southeast Asian perishable crops (pp. 33–53). Postharvest Horticulture Training and Research Center, University of the Philippines Los Baños and Bureau of Agricultural Research-Department of Agriculture.https://nast.dost.gov.ph/images/pdf%20files/Publications/Outstanding-Awardees%20BOOKS/2008/Postharvest%20Technology%20for%20Southeast%20Asia.pdf
  24. Singh, V., Hedayetullah, Md., Zaman, P., & Meher, J. (2014). Postharvest technology of fruits and vegetables: An overview. Journal of Postharvest Technology, 2(2), 124–135. https://journals.acspublisher.com/index.php/jpht/article/view/15769
  25. Sun, Y., Li, Y., Xu, Y., Sang, Y., Mei, S., Xu, C., Yu, X., Pan, T., Cheng, C., Zhang, J., Jiang, Y., & Gao, Z. (2022). The effects of storage temperature, light illumination, and low-temperature plasma on fruit rot and change in quality of postharvest Gannan navel oranges. Foods, 11(22), 3707. https://doi.org/10.3390/foods11223707
  26. Tac-an, M. I., Lacap, A. T., Bayogan, E. R., & Lubaton, C. D. (2021). Postharvest quality of two mangosteen (Garcinia mangostana L.) fruit maturities held in ambient and CoolBot-equipped cold storage. Journal of Science, Engineering and Technology, 9, 48–60. https://pdfs.semanticscholar.org/3cc6/459f593a5626b87e3b8d62418d7afa077934.pdf
  27. Thompson, J., Kader, A. A., & Sylva, K. (1996). Compatibility chart for fruits and vegetables in short-term transport and storage (Agriculture and Natural Resources Publication No. 21560). University of California, Division of Agriculture and Natural Resources, Oakland, California. https://postharvest.ucdavis.edu/compatibility-chart-short-term-transport-or-storage
  28. Tolesa, G. N., & Workneh, T. S. (2018). Effects of evaporative cooling and CoolBot air conditioning on changes in the environmental conditions inside the cooling chamber. Acta Horticulturae, 1201, 281–288. https://www.researchgate.net/publication/325714944_Effects_of_evaporative_cooling_and_CoolBot_air_conditioning_on_changes_in_the_environmental_conditions_inside_the_cooling_chamber
  29. Yin, X., Xie, X., Xia, X., Yu, J., Furgeson, I., Giovannoni, J. J., & Chen, K. (2016). Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant Journal, 86, 403–412. https://doi.org/10.1111/tpj.13178
  30. Yuan, R., & Burns, J. K. (2004). Temperature factor affecting the abscission response of mature fruit and leaves to CMN-pyrazole and ethephon in ‘Hamlin’ oranges. Journal of the American Society for Horticultural Science, 129(3), 287–293. https://doi.org/10.21273/JASHS.129.3.0287
  31. Zou, Y., Zhang, L., Rao, S., Zhu, X., Ye, L., Chen, W., & Li, X. (2014). The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury. PLoS One, 9(12), e116002. https://doi.org/10.1371/journal.pone.0116002