Advancing pharmacovigilance through artificial intelligence: A review of applications and ethical considerations
Zhinya Kawa Othman | Prisca Mirindi Nabashaho | Emmanuella Ojugbeli | David Olpengs | Mohamed Mustaf Ahmed | Don Eliseo Lucero-prisno III
Abstract:
Artificial intelligence is increasingly applied in pharmacovigilance to
identify, prioritize, and interpret adverse drug reactions across realworld data sources. This narrative review synthesizes recent peerreviewed studies (2015–2024) and maps AI use across four domains:
extraction of adverse drug reactions from social and clinical text,
supervised and ensemble signal detection in spontaneous reporting
systems and electronic health records, knowledge-graph-based
discovery of drug–event associations, and prediction of outcome
seriousness to support triage. Across domains, implementations
most consistently enhance intake, coding, prioritization, and the
timeliness of safety assessment, while graph-based methods surface
plausible associations for follow-up and seriousness models aid risk
stratification. Cross-cutting challenges include heterogeneous and
shifting data, annotation burden, class imbalance (especially for rare
events), and concerns around transparency, privacy, and fairness.
Evidence remains predominantly retrospective, with uneven external
validation, underscoring the need for prospective studies,
standardized reporting and calibration, fairness audits, and closer
alignment with regulatory signal-management workflows spanning
detection, validation, analysis, prioritization, and assessment. By
clarifying where AI is already dependable and where methodological
and ethical gaps persist, this review offers practical directions for
integrating AI into routine pharmacovigilance with auditable
thresholds, monitoring, and human oversight.
References:
- Badary, O. A. (2025). The potential of artificial intelligence and machine learning in pharmacovigilance: An update. GenoMed Connect, 2, 0010. https://doi.org/10. 69709/GENOMC.2024.176699
- Bae, J. H., Baek, Y. H., Lee, J. E., Song, I., Lee, J. H., & Shin, J. Y. (2021). Machine learning for detection of safety signals from spontaneous reporting system data: Example of nivolumab and docetaxel. Frontiers in Pharmacology, 11, 602365. https://doi.org/10.3389/fphar.2020.602365
- Bean, D. M., Wu, H., Iqbal, E., Dzahini, O., Ibharim, Z. M., Broadbent, M., Stewart, R., & Dobson, R. J. B. (2017). Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Scientific Reports, 7, 16416. https://doi.org/10.1038/s41598-017-16674-x
- Cherkas, Y., Ide, J., & van Stekelenborg, J. (2022). Leveraging machine learning to facilitate individual case causality assessment of adverse drug reactions. Drug Safety, 45(5), 571-582. https://doi.org/10.1007/s40264-022-01163-6
- Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Van Calster, B., Ghassemi, M., Liu, X., Reitsma, J. B., Van Smeden, M., Boulesteix, A. L., Camaradou, J. C., Celi, L. A., Denaxas, S., Denniston, A. K., Glocker, B., Golub, R. M., Harvey, H., Heinze, G., Hoffman, M. M., Kengne, A. P., Lam, E., Lee, N., Loder, E. W., Maier-Hein, L., Mateen, B. A., McCradden, M. D., Oakden-Rayner, L., Ordish, J., Parnell, R., Rose, S., Singh, K., Wynants, L., & Logullo, P. (2024). TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 385, e078378. https://doi.org/10.1136/bmj-2023-078378
- Dimitsaki, S., Natsiavas, P., & Jaulent, M. C. (2024). Applying Al to structured real-world data for pharmacovigilance purposes: Scoping review. Journal of Medical Internet Research, 26(1), e57824. https://doi.org/10.2196/57824
- Harpaz, R., DuMouchel, W., Schuemie, M., Bodenreider, O., Friedman, C., Horvitz, E., Ripple, A., Sorbello, A., White, R. W., Winnenburg, R., & Shah, N. H. (2017). Toward multimodal signal detection of adverse drug reactions. Journal of Biomedical Informatics, 76, 41-49. https://doi.org/10.1016/j.jbi.2017.10.013
- Hendriksen, L. C., van der Linden, P. D., Lagro-Janssen, A. L. M., van den Bemt, P. M. L. A., Siiskonen, S. J., Teichert, M., Kuiper, J. G., Herings, R. M. C., Stricker, B. Н., & Visser, L. E. (2021). Sex differences associated with adverse drug reactions resulting in hospital admissions. Biology of Sex Differences, 12(1), 34. https://doi.org/10.1186/s13293-021-00377-0
- Hussain, S., Afzal, H., Saeed, R., Iltaf, N., & Umair, M. Y. (2021). Pharmacovigilance with transformers: A framework to detect adverse drug reactions using BERT fine-tuned with FARM. Computational and Mathematical Methods in Medicine, 2021,5589829. https://doi.org/10.1155/2021/5589829
- Jeong, E., Park, N., Choi, Y., Park, R. W., & Yoon, D. (2018). Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals. PLOS ONE, 13(11), e0207749. https://doi.org/10.1371/journal.pone.0207749
- Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 1-54. https://doi.org/10.1186/s40537-019-0192-5
- Jung, J., Kim, J. H., Bae, J. H., Woo, S. S., Lee, H., & Shin, J. Y. (2024). A real-world pharmacovigilance study on cardiovascular adverse events of tisagenlecleucel using a machine learning approach. Scientific Reports, 14(1), https://doi.org/10.1038/s41598-024-64466-x
- Kiguba, R., Isabirye, G., Mayengo, J., Owiny, J., Tregunno, P., Harrison, K., Pirmohamed, M., & Ndagije, H. B. (2024). Navigating duplication in pharmacovigilance databases: A scoping review. BMJ Open, 14(4), e081990.https://doi.org/10.1136/bmjopen-2023-081990
- Kompa, B., Hakim, J. B., Palepu, A., Kompa, K. G., Smith, M., Bain, P. A., Woloszynek, S., Painter, J. L., Bate, A., & Beam, A. L. (2022). Artificial intelligence based on machine learning in pharmacovigilance: A scoping review. Drug Safety, 45(5), 477-491. https://doi.org/10.1007/s40264-022-01176-1
- Lee, J. E., Kim, J. H., Bae, J. H., Song, I., & Shin, J. Y. (2022). Detecting early safety signals of infliximab using machine learning algorithms in the Korea adverse event reporting system. Scientific Reports, 12(1), 14869.https://doi.org/10.10 38/s41598-022-18522-z
- Li, F., Liu, W., & Yu, H. (2018). Extraction of information related to adverse drug events from electronic health record notes: Design of an end-to-end model based on deep learning. JMIR Medical Informatics, 6(4), e12159. https://doi.org/10.2196/12159
- Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., & Denniston, A. K. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-Al extension. BMJ, 370, m3164. https://doi.org/10. 1136/bmj.m3164
- Martin, G. L., Jouganous, J., Savidan, R., Bellec, A., Goehrs, C., Benkebil, M., Miremont, G., Micallef, J., Salvo, F., Pariente, A., & Létinier, L. (2022). Validation of artificial intelligence to support the automatic coding of patient adverse drug reaction reports using nationwide pharmacovigilance data. Drug Safety, 45(5), 535-548. https://doi.org/10.1007/s40264-022-01153-8
- Medication Without Harm. (2017). WHO.https://www.who.int/initiatives /medication-without-harm
- Nicholson, D. N., & Greene, C. S. (2020). Constructing knowledge graphs and their biomedical applications. Computational and Structural Biotechnology Journal, 18,1414-1428. https://doi.org/10.1016/j.csbj.2020.05.017
- Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., & Gonzalez, G. (2015). Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association, 22(3), 671-681. https://doi.org/10 .1093/jamia/ocu041
- Patient safety. (2023). WHO. https://www.who.int/news-room/fact-sheets/detail /patient-safety
- Rivera, S. C., Liu, X., Chan, A. W., Denniston, A. K., & Calvert, M. J. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-Al extension. BMJ, 370. https://doi.org/10.1136/bmj.m3210
- Salas, M., Petracek, J., Yalamanchili, P., Aimer, O., Kasthuril, D., Dhingra, S., Junaid, T., & Bostic, T. (2022). The use of artificial intelligence in pharmacovigilance: A systematic review of the literature. Pharmaceutical Medicine, 36(5), 295-306. https://doi.org/10.1007/s40290-022-00441-z
- Shukla, D., Bhatt, S., Gupta, D., & Verma, S. (2024). Role of artificial intelligence in pharmacovigilance. Journal of Drug Discovery and Health Sciences, 1(4), 230-238. https://doi.org/10.21590/JDDHS.01.0
- Stanovsky, G., Gruhl, D., & Mendes, P. N. (2017). Recognizing mentions of adverse drug reaction in social media using knowledge-infused recurrent models. Proceedings of the Association for Computational Linguistics, 1, 142-151. https://aclanthology.org/E17-1014/
- The pharmacovigilance system for traditional medicine in Thailand. (2017). WHO.
- http://apps.who.int/bookorders
- Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants, L., & Steyerberg, E. W. (2019). Calibration: The Achilles heel of predictive analytics. BMC Medicine, 17(1), 230. https://doi.org/10.1186/s12916-019-1466-7
- Vasey, B., Nagendran, M., Campbell, B., Clifton, D. A., Collins, G. S., Denaxas, S., Denniston, A. K., Faes, L., Geerts, B., Ibharim, M., Liu, X., Mateen, B. A., Mathur, P., McCradden, M. D., Morgan, L., Ordish, J., Rogers, C., Saria, S., Ting, D. S. W., Watkinson, P., Weber, W., Wheatstone, P., McCulloch, & the DECIDE-Al expert group. (2022). Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nature Medicine, 28(5), 924-933. https://doi.org/10.1038/s41591-022-01772-9
- Warner, J., Prada Jardim, A., & Albera, C. (2025). Artificial intelligence: Applications in pharmacovigilance signal management. Pharmaceutical Medicine, 39(3), 183-198. https://doi.org/10.1007/s40290-025-00561-2
- Watson, S., Caster, O., Rochon, P. A., & den Ruijter, H. (2019). Reported adverse drug reactions in women and men: Aggregated evidence from globally collected individual case reports during half a century. EClinical Medicine, 17, 100188. https://doi.org/10.1016/j.eclinm.2019.10.001
- Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., Jung, K., Heller, K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-Israni, S., & Goldenberg, A. (2019). Author correction: Do no harm: A roadmap for responsible machine learning for health care. Nature Medicine, 25(10), 1627.https://doi.org/10.103 8/s41591-019-0609-x
- Yang, X., Bian, J., Gong, Y., Hogan, W. R., & Wu, Y. (2019). MADEX: A system for detecting medications, adverse drug events, and their relations from clinical notes. Drug Safety, 42(1), 123-133. https://doi.org/10.1007/s40264-018-0761-0
- Zhao, H., Ni, P., Zhao, Q., Liang, X., Ai, D., Erhardt, S., Wang, J., Li, Y., & Wang, J. (2023). Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework. Communications Biology, 6. 870. https://doi.org/10.1038/s42003-023-05243-w
- Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34(13), 1457-1466. https://doi.org/10.1093/bioinformatics/bty294
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)