Robotic Rehabilitation Devices in the Philippines: A Review of Recent Advancements
Czaryn Diane Ompico | Juliah Faye Dela Vega | Tonica Garcia | Christien Matthew Ramos | Enrique Mariano Perez | John Carlo Reyes | Julius Noel Banayo | Armyn Sy | Nicanor Roxas Jr. | Francisco Emmanuel Munsayac Jr. Iii | Nilo T. Bugtai
Discipline: bioengineering, medical and biomedical engineering
Abstract:
Background: Rehabilitation robots are emerging technologies that address
common challenges in conventional rehabilitation methods, such as laborintensive,
costly, and often yielding slow or suboptimal recovery outcomes.
These robots have been gaining popularity in the Philippines due to their costeffectiveness
and improved therapeutic efficiency. The country has gradually
begun adapting technology, with rehabilitation robots introduced as assistive
devices for clinical practice such as electromyogram (EMG)-assisted devices,
Functional Electrical Stimulation (FES), Robotic Exoskeleton Hand, and Robot
Exoskeleton for the Upper Limb. However, there is limited to no existing literature
exploring robotic rehabilitation device advancements in the Philippines.
Methods: Thus, this review examined the prototypes developed and the
progress made in developing rehabilitation devices from 2010 to the present in
the country.
Results: Findings indicate that the Philippines is becoming more receptive to
rehabilitation robotics, as evidenced by increasing recognition of its relevance
and the procurement of foreign-developed technologies. Nevertheless, its
progress is limited by investment, insufficient academic programs, and the
absence of regulatory frameworks.
Conclusion: Increased government support for research, infrastructure,
and protocols alongside university integration of relevant courses and
interdisciplinary research are needed to foster its advancement.
References:
- Advincula, A. R. A., Masilang, J. M. B., Villablanca, J. M. F., & Sison, L. G. (2018, October 1). Cardiovascular Rehabilitation Equipment (CaRE). IEEE Xplore. https://doi.org/10.1109/TENCON.2018.8650074
- Al-Ayyad, M., Owida, H. A., de Fazio, R., Al-Naami, B., & Visconti, P. (2023). Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics, 12(7), 1520–1520. https://doi.org/10.3390/electronics12071520
- ASEAN Secretariat (2015). ASEAN Medical Device Directive. [PDF]. ASEAN Main Portal. https://asean.org/wp-content/uploads/2016/06/22.-September-2015-ASEAN-Medical-Device-Directive.pdf
- Baniqued, P. D. E., Dungao, J. R., Manguerra, M. V., Baldovino, R. G., Abad, A. C., & Bugtai, N. T. (2018). Biomimetics in the design of a robotic exoskeleton for upper limb therapy. AIP Conference Proceedings, 1933, 040006. https://doi.org/10.1063/1.5023976
- Bhardwaj, S., Khan, A. A., & Muzammil, M. (2021). Lower limb rehabilitation robotics: The current understanding and technology. WORK, 69(3), 775-793. https://doi.org/10.3233/WOR-205012
- Borbajo, T.J., Casil, R.L., Cruz, J.V., Penaflor, T., & Musngi, M. (2017). Electromyography Controlled Functional Electrical Stimulation Data Acquisition System for Leg Rehabilitation [Paper presentation]. DLSU Research Congress 2017. https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2017/HCT/HCT-II-021.pdf
- Cano-de-la-Cuerda, R., Blázquez-Fernández, A., Marcos-Antón, S., Sánchez-Herrera-Baeza, P., Fernández-González, P., Collado-Vázquez, S., Jiménez-Antona, C., & Laguarta-Val, S. (2024). Economic Cost of Rehabilitation with Robotic and Virtual Reality Systems in People with Neurological Disorders: A Systematic Review. Journal of Clinical Medicine, 13(6), 1531. https://doi.org/10.3390/jcm13061531
- Carag, M., Garcia, A., Iniguez, K., Tan, M., and Santiago, A. (2015). Electromyogram-Assisted Upper Limb Rehabilitation Device [Paper presentation]. DLSU Research Congress 2015. https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2015/HCT/003-HCT_Santiago_AP.pdf
- Carpino, G., Pezzola, A., Urbano, M., & Guglielmelli, E. (2018). Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art. Journal of Healthcare Engineering, 2018, 1–9. https://doi.org/10.1155/2018/7492024
- De La Salle University Manila. (2021, December 13). IBEHT-RS-AGP-ACT3 - de la Salle University. De La Salle University. https://www.dlsu.edu.ph/research/research-centers/ibeht/robotic-rehabilitation-devices/ibeht-rs-agp-act3/
- Galido, E., Esplanada, M. C., Estacion, C. J., Migrino, J. P., Rapisora, J., Salita, J., Amado, T., Jorda, R., & Tolentino, L. K. (2018). EMG Speed-Controlled Rehabilitation Treadmill with physiological data Acquisition System using BITAlino KIt. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1–5. https://doi.org/10.1109/hnicem.2018.8666272
- Giansanti, D. (2020). The Rehabilitation and the Robotics: Are They Going Together Well? Healthcare, 9(1), 26. https://doi.org/10.3390/healthcare9010026
- Iversen, M. D. (2012). Rehabilitation Interventions for Pain and Disability in Osteoarthritis. Orthopaedic Nursing, 31(2), 103–108. https://doi.org/10.1097/nor.0b013e31824fce07
- Lee, S. H., Park, G., Cho, D. Y., Kim, H. Y., Lee, J.-Y., Kim, S., Park, S.-B., & Shin, J.-H. (2020). Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58630-2
- Lo, K., Stephenson, M., & Lockwood, C. (2019). The economic cost of robotic rehabilitation for adult stroke patients: A systematic review. JBI Database of Systematic Reviews and Implementation Reports, 17(4), 520–547. https://doi.org/10.11124/jbisrir-2017-003896
- Lungsod ng Maynila (2021). Inilunsad ng Ospital ng Maynila Medical Center ang Robotics Rehab program nito para sa mga pasyente na sumasailalim sa physical therapy [Image]. City of Manila. https://manila.gov.ph/tingnan-inilunsad-ng-ospital-ng-maynila-medical-center-ang-robotics-rehab-program-nito-para-sa-mga-pasyente-na-sumasailalim-sa-physical-therapy/?appgw_azwaf_jsc=SbJYuAIvoWxBqW9LlYzhfaPozlCvouHXB4WiLBvup64
- Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review. Current Robotics Reports, 1(3), 131–144. https://doi.org/10.1007/s43154-020-00015-4
- Munsayac, F. E., Culaba, A., Bugtai, N., Abuan, R. D., & Kaplan, A. (2023). Comprehensive Study of Industry 4.0 in Robotics for Policy Development. Recoletos Multidisciplinary Research Journal, 11(1), 55–69. https://doi.org/10.32871/rmrj2311.01.06
- Olvido, M. M. (2020). Configuration of Research Culture: Investment, Process, and Norm. Recoletos Multidisciplinary Research Journal, 8(2), 1–13. https://doi.org/10.32871/rmrj2008.02.01
- Ong, P. R., & Bugtai, N. T. (2018). A bio-inspired design of a hand robotic exoskeleton for rehabilitation. AIP Conference Proceedings, 1933, 040008. https://doi.org/10.1063/1.5023978
- Philippine Council for Health Research and Development. (2024, November 8). AGAPAY : Robotic Exoskeleton for Upper Extremity Rehabilitation - Philippine Council for Health Research and Development. https://www.pchrd.dost.gov.ph/heartnovation/agapay-robotic-exoskeleton-for-upper-extremity-rehabilitation/
- Saysay, R. S., Roxas, N. R., Bugtai, N. T., Co, H. S., & Baldovino, R. G. (2021). A 3-DOF Cable-Driven Robotic Ankle Rehabilitation Device. Lecture Notes in Networks and Systems, 919–929. https://doi.org/10.1007/978-3-030-66840-2_69
- Siviy, C., Baker, L. M., Quinlivan, B. T., Porciuncula, F., Swaminathan, K., Awad, L. N., & Walsh, C. J. (2022). Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nature Biomedical Engineering, 1–17. https://doi.org/10.1038/s41551-022-00984-1
- Song, D., Liu, S., Gao, Y., & Huang, Y. (2023). Human Factor Engineering Research for Rehabilitation Robots: A Systematic review. Computational Intelligence and Neuroscience, 2023(1). https://doi.org/10.1155/2023/2052231
- Sukoco, B. M., Putra, R. A., Muqaffi, H. N., Lutfian, M. V., & Wicaksono, H. (2023). Comparative Study of ASEAN Research Productivity. SAGE Open, 13(1). https://doi.org/10.1177/21582440221145157
- Turingan, C. (2021). TINGNAN: Inilunsad ng Ospital ng Maynila Medical Center ang Robotics Rehab program nito para sa mga pasyente na sumasailalim sa physical therapy [Image]. City of Manila. https://manila.gov.ph/tingnan-inilunsad-ng-ospital-ng-maynila-medical-center-ang-robotics-rehab-program-nito-para-sa-mga-pasyente-na-sumasailalim-sa-physical-therapy/?appgw_azwaf_jsc=EWv53Hjd3tseGo97Z12pz4tN9joESkSVvzIIarhB35Y
- WHO Regional Office for the Western Pacific. (2017). Meeting on Rehabilitation in Universal Health Coverage, Manila, Philippines, 29-31 August 2017 : meeting report. https://iris.who.int/handle/10665/259501
- Zhang, Y., Liu, X., Qiao, X., & Fan, Y. (2023). Characteristics and emerging trends in research on rehabilitation robots (2001-2020): A Bibliometric Study (Preprint). Journal of Medical Internet Research. https://doi.org/10.2196/42901