HomePUP Journal of Science and Technologyvol. 13 no. 1 (2020)

INFLUENCE OF NITROGEN CONCENTRATION ON THE C-PHYCOCYANIN PRODUCTION OF Spirulina platensis (GOMONT) GEITLER

Armin S Coronado | Florabelle B Cabbarubias | Lanieleen Jerah Mae G Arocha

Discipline: biology (non-specific), microbiology and cell science

 

Abstract:

Abstract: Spirulina platensis is a filamentous cyanobacterium that is widely used as a functional food due to its high nutritional value. A 24-day cultivation of S. platensis was conducted to assess the influence of varying nitrogen concentration in the production of C-phycocyanin (CPC). The CPC concentration, yield and purity were determined. The result showed that the CPC concentration and yield were highest at day 20 with 0.446 ± 0.057 mg/mL and 293.56 ± 78.33 mg/g, respectively. The purity of CPC extracted was highest at day 16 and considered as food grade with purity value from 0.78 to 0.97. This study showed high biomass productivity on nitrogen source.



References:

  1. Abalde, J., Bentacourt, L., Torres, E., & Cid, A. (1998). Purification and characterization of phycocyanin from the marine cynobacterium Synechoccus sp. IO9201. Plant Science, 136 (1), 109-120.
  2. Becker, E. (1994). Microalgae biotechnology and microbiology. New York City: Cambridge University Press. Bennett, A., & Bogorad, L. (1973). Complimentary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419-435.
  3. Bermejo, R., Felipe, M., Talavera, E., & Alvarez-Pez, M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanin from microalga Spirulina platensis. Chromatographia, 63(1-2), 59-66.
  4. Bryant, D., Gugliemi, G., de Marsac, N., Castets, A., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123, 113-127.
  5. Cai, T., Park, S., & Li, Y. (2013). Nutrient Recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
  6. Ciferi, O., & Tiboni, O. (1985). The biochemistry and industrial potential of Spirulina. Annual Review of Microbiology, 39, 503-526.
  7. Chowdhury, MR. (2005). Culture and growth performance of Spirulina platensis in different concentrations of pond bottom water medium (MS Thesis, Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, p. 73).
  8. Colla, L. M., Reinehr, C. O., Costa J.A V., & Reichert, C. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493.
  9. Filali, R. (1997). MELiSSA: nitrogen sources for growth of the cyanobacterium Spirulina. In Sixth European Symposium on Space Environmental Control Systems (Vol. 400, p. 909).
  10. Grover, P., Bhatnagar, A., Kumari, N., Bhatt, A., Nishad, D., & Purkayastha, J. (2021). C-Phycocyanin – a novel protein from Spirulina platensis – In vivo toxicity, antioxidant and immunomodulatory studies. Saudi Journal of Biological Science, 28(3), 1853-1859.
  11. Hanaa, H., & El-Baky, A. (2003). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutricion Hospitalaria. ISSN 0212-1611. DOI:10.3305/nh
  12. Hu, Q. (2013). Environmental effects on cell composition. In A. Richmond, & Q. Hu, Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 114-122. West Sussex: Willey Blackwell.
  13. Kaewdam, S., Varith, J., & Narkprasom, K. (2019). Kinetic Models for phycocyanin production by fed-batch cultivation of the Spirulina platensis. International Journal of Geomate, 17(61), 187-194. ISSN: 2186-2982.
  14. Kim, S., Ly, V., Kim, J., Lee, Y., & Woo, H. (2015). Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chemical Engineering Journal, 263, 194-199.
  15. Moraes., C.C., Sala, L., Cerveria, G. P., & Kalil, S.J., (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28, 45-49.
  16. O’hEocha, C. (1963). Spectral Properties of the Phycobilins. Biochemistry, 2(2), 375- 382. Rafiqul, M. (2003). Salt stress culture of blue-green Algae Spirulina fusiformis. Pakistan Journal of Biological Sciences, 6(7), 648-650.
  17. Roman, B., Pez, M., Fernandez, G., & Grima, M. (2002). Recovery of B-Phycoeritrin from Microalga Porphyrudium cruentum. Journal of Biotechnology, 93(1), 73-85.
  18. Romay, H., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-Phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein and Peptide Science, 4(3), 207-216.
  19. Sarada, R., Pillai, G., & Ravishankar, G. (1999). A phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy or extraction methods and stability studies on phycocyanin. Process of Biochemistry, 34(8), 795-801.
  20. Silveria, T., Burkert, F., Costa, A., & Kalil, J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629-1634.
  21. Silva, A. (2008). Estudo do Processo Biotecnológico de Produção, Extração e Recuperação do Pigmento Ficocianina da Spirulina platensis. (MSc Dissertation. UFPR, Curitiba, Paraná, Brasil).
  22. Sivansankari, S., & Ravindran N. (2011). Comparison of different extraction methods for phycocyanin extraction and yield from Spirulina platensis. International Journal of Current Microbiology and Applied Science, 3(8), 904-909.
  23. Sujatha, K. (2012). Optimization of growth conditions for carotenoid production from Spirulina platensis (Geitler). International Journal of Current Microbiology and Applied Sciences, 2(10), 325-328.
  24. Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99 (1), 188-194.
  25. Stewart, D., & Farmer, H. (1984). Extraction, identification and quantitation of phycobiliproteins pigments from phototrophic plankton. pigments from phototrophic plankton. Limnology and Oceanography, 29(2), 392-397.
  26. Torzillo, G., & Vonshak A. (1994). Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass and Bioenergy, 6(5), 399-403.
  27. United States Food and Drug Administration (USFDA). (1981). Federal Register. Department of Health and Human Services. Vol. 46, No. 142. Docket No. 75F0355.
  28. Walter, A., De Carvalho, J., Thomaz-Soccol, V., & de Faria, A. (2011). Study of phycocyanin production from Spirulina platensis under different light spectra. Brazillian Archives of Biology and Technology, 54(4), 675-682.
  29. Wang, J., Sommerfeld, M., Lu, C., & Hu, Q. (2013). Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae, 28(2), 193- 202.