Utilization of Mungbean-Taro Composite Flour in Making Gluten-Free Noodles
Jacqueline A. Quintal | Genelyn Alilly C. San Juan
Discipline: food sciences
Abstract:
Abstract
This study aimed to make gluten-free noodles using locally available crops as non-wheat flour sources, providing accessible noodle options for individuals with gluten intolerance while supporting local agricultural economies. It used a composite mixture incorporating mung bean flour (MBF) and taro flour (TF) in different proportions: 25% MBF: 75% TF, 50% MBF: 50% TF, 75% MBF: 25% TF, and a control with 100% all-purpose flour (APF). Fifteen trained panelists evaluated the quality characteristics of the noodles through quality scoring, while 40 consumers determined the level of acceptability through a 9-point hedonic scale. Increasing the proportion of mung bean flour compared to taro flour in the composite flour mixture resulted in a more pronounced color, aroma, and flavor, while all treatments achieved an “al dente” texture. Noodles with a 75% MBF: 25% TF ratio received the highest mean ratings in terms of color (6.47±0.75), aroma (5.23±1.07), texture (4.27±1.98), and flavor (4.60±1.67). in terms of acceptability, the 100% APF noodles were “liked very much” in terms of color (7.7±1.1), texture (7.9±0.9), and overall liking (7.5±0.8). Although APF noodles received the highest ratings for aroma and flavor, they were rated as “liked moderately” alongside the 50% MBF: 50% TF and 75% MBF: 25% TF noodles. While color acceptability was consistent across treatments, texture ratings significantly favored the APF noodles. The 50% MBF: 50% TF and 75% MBF: 25% TF noodles showed no significant differences from APF noodles in aroma, flavor, and overall liking, suggesting their potential to make noodles without adversely affecting consumer acceptance. Future research should explore additional ingredients and processes, such as other hydrocolloids and starch pre-gelatinization, to enhance the quality and acceptability, particularly of the 50% MBF: 50% TF and 75% MBF: 25% TF noodles.
References:
- Aditika, Kapoor, B., Singh, S., & Kumar, P. (2021). Taro (Colocasia esculenta); Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.08.014
- Akalu, Z. K. & Geleta, S. H. (2020). Comparative Analysis on the Proximate Composition of Tubers of Colocasia esculenta, L. Schott and Dioscorea alata Cultivated in Ethiopia, American Journal of Bioscience and Bioengineering, 7(6), pp. 93-101. http://doi.org/10.11648/j.bio.20190706.13
- Akajiaku, L. (2017). Using Sorghum Flour as Part Substitute of Wheat Flour in Noodles Making. MOJ Food Processing & Technology, 5(2). https://doi.org/10.15406/mojfpt.2017.05.00120
- Akintayo, O. A., Oyeyinka, S. A., Aziz, A. O., Olawuyi, I. F., Kayode, R. M. O., & Karim, O. R. (2020). Quality attributes of breads from highâquality cassava flour improved with wet gluten. Journal of Food Science. https://doi.org/10.1111/1750-3841.15347
- Alflen, T., Quast, E., Bertan, L., & Bainy, E. (2016). Partial substitution of wheat flour with taro (Colocasia esculenta) flour on cookie quality. Revista Ciencias Exatas e Naturais. 18. http://doi.org/10.5935/RECEN.2016.02.01.
- Alviola, J. N. & Monterde V. G. (2018). Physicochemical and Functional Properties of Wheat (Triticum aestivum) and Selected Local Flours in the Philippines. Philippine Journal of Science, 147(3).
- Arendt, E. K. & Zannini, E. (2013). Wheat and other Triticum grains. Cereal Grains for the Food and Beverage Industries, 1(67e). http://doi.org/10.1533/9780857098924.1
- Balakireva, A. & Zamyatnin, A. (2016). Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities. Nutrients, 8(10), 644. http://doi.org/10.3390/nu8100644
- Cato, L., & Li, M. (2020). Functional ingredients in Asian noodle manufacturing. Asian Noodle Manufacturing, 25–42. https://doi.org/10.1016/b978-0-12-812873-2.00003-0
- Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., … Shen, Q. (2019). Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238
- Huang, P. H., Cheng, Y. T., Chan, Y. J., Lu, W.C., & Li, P. H. (2022). Effect of Heat Treatment on Nutritional and Chromatic Properties of Mung Bean (Vigna radiata L.). Agronomy, 12(6):1365. https://doi.org/10.3390/agronomy12061365
- Kaushal, P. & Sharma, H. K. (2014). Effect of Incorporating Taro (Colocasia esculenta), Rice (Oryza sativa), and Pigeon Pea (Cajanus cajan) Flour Blends on Noodle Properties. International Journal of Food Properties, 17(4), 765-781. http://doi.org/10.1080/10942912.2012.665405
- Lerner, A. (2010). New therapeutic strategies for celiac disease. Autoimmunity Reviews, 9(3), 144–147. http://doi.org/10.1016/j.autrev.2009.05.002
- Levent, H. (2017). Effect of partial substitution of gluten-free flour mixtures with chia (Salvia hispanica L.) flour on quality of gluten-free noodles. Journal of Food Science and Technology, 54(7), 1971–1978. https://doi.org/10.1007/s13197-017-2633-5
- Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., … Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science and Technology. http://doi.org/10.1007/s13197-018-3460-z
- Mariotti, M., Iametti, S., Cappa, C., Rasmussen, P., & Lucisano, M. (2011). Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. Journal of Cereal Science, 53(3), 319–327. http://doi.org/10.1016/j.jcs.2011.02.001
- Obadi, M., Zhang, J., He, Z., Zhu, S., Wu, Q., Qi, Y., & Xu, B. (2022). A review of recent advances and techniques in the noodle mixing process. LWT, 154, 112680. https://doi.org/10.1016/j.lwt.2021.112680
- Omeire, G. C., Umeji, O. F., & Obasi, N. E. (2014). Acceptability of Noodles Produced from Blends of Wheat, Acha and Soybean Composite Flours. Nigerian Food Journal, 32(1), 31–37. http://doi.org/10.1016/s0189-7241(15)30093-x
- Padalino, L., Conte, A., & Del Nobile, M. A. (2016). Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods, 5(4), 87. https://doi.org/10.3390/foods5040087
- Pasha, I., Rashid, S., Anjum, F., Sultan, M., Qayyum, M., & Saeed, F. (2011). Quality Evaluation of Wheat-Mungbean Flour Blends and Their Utilization in Baked Products. Pakistan Journal of Nutrition, 10. https://doi.org/10.3923/pjn.2011.388.392
- Purwandari, U., Farida, U., Dianing, V. P. P., Sari, L. Y., Kurniawati, A. G., Warnianti, A. & Fauziyah, E. (2018). Texture, sensory, antioxidant, and blood glucose profile of gluten-free taro and banana noodles using gathotan flour as texturing agent. International Food Research Journal, 25(6). 2459-2466
- Rajagopal, S. M.D., M.P.H. (2023, April 14). Gluten-free diet: Is it right for me?. John Hopkins Medicine. (n.d.). https://www.hopkinsmedicine.org/health/conditions-and-diseases/celiac-disease/what-is-a-glutenfree-diet
- Salazar, C., García-Cárdenas, J. M., & Paz-Y-Miño, C. (2017). Understanding Celiac Disease From Genetics to the Future Diagnostic Strategies. Clinical medicine insights. Gastroenterology, 10, 1179552217712249. https://doi.org/10.1177/1179552217712249
- Too, B. C., Tai, N. V., & Thuy, N. M. (2022). Formulation and quality evaluation of noodles with starchy flours containing high levels of resistant starch. Acta Sci.Pol. Technol. Aliment. 21(2), 145-154 https://doi.org/10.17306/J.AFS.2022.1011
- Tugay, M. M. DR. (2014a) Utilization of Pili Pulp Oil in Processing “Turay” into Spanish-style Sardines (Master’s Thesis). Catanduanes State University.
- Tugay, M. M. DR. (2014b). Utilization of Pili Pulp oil and Pili Kernel oil in processing “Turay” and “Liliw” into Spanish-style sardines [Institutional Research, Catanduanes State University].
- Vindika, S. & Isuru, W. (2021). Flour Properties of Whole and Dehulled Mung Beans (Vigna radiata) and Development of Food Gels Incorporated with Kithul (Caryota urenus) Flour. Vidyodaya Journal of Science, 21. http://doi.org/10.31357/vjs.v24i01.4959
- Wahjuningsih, S. B., Azkia, M. N., & Kusumaningtyas, R.W. (2022). Physicochemical, functional and sensory properties of wheat noodles substituted by sorghum and mung bean flours. Food Research, 6(5). 84-90. http://doi.org/0.26656/fr.2017.6(5).604
- Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24(2), 115–119. doi:10.1016/j.fm.2006.07.004
- Yi, C., Li, Y., Zhu, H., Liu, Y., & Quan, K. (2021). Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT, 146, 111434. https://doi.org/10.1016/j.lwt.2021.111434
- Zhang, Z, Zhang, L., Chen, M., & Zhian, H. E. (2022). Effects of taro powder on the properties of wheat flour and dough. Food Science and Technology, 42. https://doi.org/10.1590%2Ffst.116221
- Zhang, H., Meng, Y., Liu, X., Guan, X., Huang, K., & Li, S. (2019). Effect of extruded mung bean flour on dough rheology and quality of Chinese noodles. Cereal Chem, 00. 1–11. https://doi.org/10.1002/cche.10184
ISSN 2984-8954 (Online)
ISSN 2984-8946 (Print)